Spaces:
Running
Running
File size: 24,939 Bytes
ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 5190859 ca37b38 5190859 ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f aa0b83f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
import random
import torch
from torch.utils.data import Dataset
import torchvision.transforms.functional as F
import numpy as np
from torch.utils.data.dataloader import default_collate
import cv2
from torch.utils.data import Dataset, DataLoader, Subset, ConcatDataset
from modules.utils import object_dict, arrow_dict, resize_boxes, resize_keypoints
import torchvision.transforms.functional as F
import torch
class RandomCrop:
def __init__(self, new_size=(1333, 800), crop_fraction=0.5, min_objects=4):
"""
Initialize the RandomCrop transformation.
Parameters:
- new_size (tuple): The target size for the image after cropping.
- crop_fraction (float): The fraction of the original width to use when cropping.
- min_objects (int): Minimum number of objects required to be within the crop.
"""
self.crop_fraction = crop_fraction
self.min_objects = min_objects
self.new_size = new_size
def __call__(self, image, target):
"""
Apply the RandomCrop transformation to the image and its target.
Parameters:
- image (PIL Image): The image to be cropped.
- target (dict): The target dictionary containing 'boxes' and optional 'keypoints'.
Returns:
- PIL Image, dict: The cropped image and its updated target dictionary.
"""
new_w1, new_h1 = self.new_size
w, h = image.size
new_w = int(w * self.crop_fraction)
new_h = int(new_w * new_h1 / new_w1)
i = 0
for i in range(4): # Try 4 times to adjust new_w and new_h if new_h >= h
if new_h >= h:
i += 0.05
new_w = int(w * (self.crop_fraction - i))
new_h = int(new_w * new_h1 / new_w1)
if new_h < h:
continue
if new_h >= h: # If still not valid, return original image and target
return image, target
boxes = target["boxes"]
if 'keypoints' in target:
keypoints = target["keypoints"]
else:
keypoints = []
for _ in range(len(boxes)):
keypoints.append(torch.zeros((2, 3)))
# Attempt to find a suitable crop region
success = False
for _ in range(100): # Max 100 attempts to find a valid crop
top = random.randint(0, h - new_h)
left = random.randint(0, w - new_w)
crop_region = [left, top, left + new_w, top + new_h]
# Check how many objects are fully contained in this region
contained_boxes = []
contained_keypoints = []
for box, kp in zip(boxes, keypoints):
if box[0] >= crop_region[0] and box[1] >= crop_region[1] and box[2] <= crop_region[2] and box[3] <= crop_region[3]:
# Adjust box and keypoints coordinates
new_box = box - torch.tensor([crop_region[0], crop_region[1], crop_region[0], crop_region[1]])
new_kp = kp - torch.tensor([crop_region[0], crop_region[1], 0])
contained_boxes.append(new_box)
contained_keypoints.append(new_kp)
if len(contained_boxes) >= self.min_objects:
success = True
break
if success:
# Perform the actual crop
image = F.crop(image, top, left, new_h, new_w)
target["boxes"] = torch.stack(contained_boxes) if contained_boxes else torch.zeros((0, 4))
if 'keypoints' in target:
target["keypoints"] = torch.stack(contained_keypoints) if contained_keypoints else torch.zeros((0, 2, 4))
return image, target
class RandomFlip:
def __init__(self, h_flip_prob=0.5, v_flip_prob=0.5):
"""
Initialize the RandomFlip transformation with probabilities for flipping.
Parameters:
- h_flip_prob (float): Probability of applying a horizontal flip to the image.
- v_flip_prob (float): Probability of applying a vertical flip to the image.
"""
self.h_flip_prob = h_flip_prob
self.v_flip_prob = v_flip_prob
def __call__(self, image, target):
"""
Apply random horizontal and/or vertical flip to the image and updates target data accordingly.
Parameters:
- image (PIL Image): The image to be flipped.
- target (dict): The target dictionary containing 'boxes' and 'keypoints'.
Returns:
- PIL Image, dict: The flipped image and its updated target dictionary.
"""
if random.random() < self.h_flip_prob:
image = F.hflip(image)
w, _ = image.size # Get the new width of the image after flip for bounding box adjustment
# Adjust bounding boxes for horizontal flip
for i, box in enumerate(target['boxes']):
xmin, ymin, xmax, ymax = box
target['boxes'][i] = torch.tensor([w - xmax, ymin, w - xmin, ymax], dtype=torch.float32)
# Adjust keypoints for horizontal flip
if 'keypoints' in target:
new_keypoints = []
for keypoints_for_object in target['keypoints']:
flipped_keypoints_for_object = []
for kp in keypoints_for_object:
x, y = kp[:2]
new_x = w - x
flipped_keypoints_for_object.append(torch.tensor([new_x, y] + list(kp[2:])))
new_keypoints.append(torch.stack(flipped_keypoints_for_object))
target['keypoints'] = torch.stack(new_keypoints)
if random.random() < self.v_flip_prob:
image = F.vflip(image)
_, h = image.size # Get the new height of the image after flip for bounding box adjustment
# Adjust bounding boxes for vertical flip
for i, box in enumerate(target['boxes']):
xmin, ymin, xmax, ymax = box
target['boxes'][i] = torch.tensor([xmin, h - ymax, xmax, h - ymin], dtype=torch.float32)
# Adjust keypoints for vertical flip
if 'keypoints' in target:
new_keypoints = []
for keypoints_for_object in target['keypoints']:
flipped_keypoints_for_object = []
for kp in keypoints_for_object:
x, y = kp[:2]
new_y = h - y
flipped_keypoints_for_object.append(torch.tensor([x, new_y] + list(kp[2:])))
new_keypoints.append(torch.stack(flipped_keypoints_for_object))
target['keypoints'] = torch.stack(new_keypoints)
return image, target
class RandomRotate:
def __init__(self, max_rotate_deg=20, rotate_proba=0.3):
"""
Initialize the RandomRotate transformation with a maximum rotation angle and probability of rotating.
Parameters:
- max_rotate_deg (int): Maximum degree to rotate the image.
- rotate_proba (float): Probability of applying rotation to the image.
"""
self.max_rotate_deg = max_rotate_deg
self.rotate_proba = rotate_proba
def __call__(self, image, target):
"""
Randomly rotate the image and updates the target data accordingly.
Parameters:
- image (PIL Image): The image to be rotated.
- target (dict): The target dictionary containing 'boxes', 'labels', and 'keypoints'.
Returns:
- PIL Image, dict: The rotated image and its updated target dictionary.
"""
if random.random() < self.rotate_proba:
angle = random.uniform(-self.max_rotate_deg, self.max_rotate_deg)
image = F.rotate(image, angle, expand=False, fill=255)
# Rotate bounding boxes
w, h = image.size
cx, cy = w / 2, h / 2
boxes = target["boxes"]
new_boxes = []
for box in boxes:
new_box = self.rotate_box(box, angle, cx, cy)
new_boxes.append(new_box)
target["boxes"] = torch.stack(new_boxes)
# Rotate keypoints
if 'keypoints' in target:
new_keypoints = []
for keypoints in target["keypoints"]:
new_kp = self.rotate_keypoints(keypoints, angle, cx, cy)
new_keypoints.append(new_kp)
target["keypoints"] = torch.stack(new_keypoints)
return image, target
def rotate_box(self, box, angle, cx, cy):
"""
Rotate a bounding box by a given angle around the center of the image.
Parameters:
- box (tensor): The bounding box to be rotated.
- angle (float): The angle to rotate the box.
- cx (float): The x-coordinate of the image center.
- cy (float): The y-coordinate of the image center.
Returns:
- tensor: The rotated bounding box.
"""
x1, y1, x2, y2 = box
corners = torch.tensor([
[x1, y1],
[x2, y1],
[x2, y2],
[x1, y2]
])
corners = torch.cat((corners, torch.ones(corners.shape[0], 1)), dim=1)
M = cv2.getRotationMatrix2D((cx, cy), angle, 1)
corners = torch.matmul(torch.tensor(M, dtype=torch.float32), corners.T).T
x_ = corners[:, 0]
y_ = corners[:, 1]
x_min, x_max = torch.min(x_), torch.max(x_)
y_min, y_max = torch.min(y_), torch.max(y_)
return torch.tensor([x_min, y_min, x_max, y_max], dtype=torch.float32)
def rotate_keypoints(self, keypoints, angle, cx, cy):
"""
Rotate keypoints by a given angle around the center of the image.
Parameters:
- keypoints (tensor): The keypoints to be rotated.
- angle (float): The angle to rotate the keypoints.
- cx (float): The x-coordinate of the image center.
- cy (float): The y-coordinate of the image center.
Returns:
- tensor: The rotated keypoints.
"""
new_keypoints = []
for kp in keypoints:
x, y, v = kp
point = torch.tensor([x, y, 1])
M = cv2.getRotationMatrix2D((cx, cy), angle, 1)
new_point = torch.matmul(torch.tensor(M, dtype=torch.float32), point)
new_keypoints.append(torch.tensor([new_point[0], new_point[1], v], dtype=torch.float32))
return torch.stack(new_keypoints)
def rotate_90_box(box, angle, w, h):
"""
Rotate a bounding box by 90 degrees.
Parameters:
- box (tensor): The bounding box to be rotated.
- angle (int): The angle to rotate the box (90 or -90 degrees).
- w (int): The width of the image.
- h (int): The height of the image.
Returns:
- tensor: The rotated bounding box.
"""
x1, y1, x2, y2 = box
if angle == 90:
return torch.tensor([y1, h - x2, y2, h - x1])
elif angle == 270 or angle == -90:
return torch.tensor([w - y2, x1, w - y1, x2])
else:
print("angle not supported")
def rotate_90_keypoints(kp, angle, w, h):
"""
Rotate keypoints by 90 degrees.
Parameters:
- kp (tensor): The keypoints to be rotated.
- angle (int): The angle to rotate the keypoints (90 or -90 degrees).
- w (int): The width of the image.
- h (int): The height of the image.
Returns:
- tensor: The rotated keypoints.
"""
# Extract coordinates and visibility from each keypoint tensor
x1, y1, v1 = kp[0][0], kp[0][1], kp[0][2]
x2, y2, v2 = kp[1][0], kp[1][1], kp[1][2]
# Swap x and y coordinates for each keypoint
if angle == 90:
new = [[y1, h - x1, v1], [y2, h - x2, v2]]
elif angle == 270 or angle == -90:
new = [[w - y1, x1, v1], [w - y2, x2, v2]]
return torch.tensor(new, dtype=torch.float32)
def rotate_vertical(image, target):
"""
Rotate the image and target if the image is vertical.
Parameters:
- image (PIL Image): The image to be rotated.
- target (dict): The target dictionary containing 'boxes' and 'keypoints'.
Returns:
- PIL Image, dict: The rotated image and its updated target dictionary.
"""
new_boxes = []
angle = random.choice([-90, 90])
image = F.rotate(image, angle, expand=True, fill=200)
for box in target["boxes"]:
new_box = rotate_90_box(box, angle, image.size[0], image.size[1])
new_boxes.append(new_box)
target["boxes"] = torch.stack(new_boxes)
if 'keypoints' in target:
new_kp = []
for kp in target['keypoints']:
new_key = rotate_90_keypoints(kp, angle, image.size[0], image.size[1])
new_kp.append(new_key)
target['keypoints'] = torch.stack(new_kp)
return image, target
def resize_and_pad(image, target, new_size=(1333, 800)):
"""
Resize and pad the image and target to the specified new size while maintaining the aspect ratio.
Parameters:
- image (PIL Image): The image to be resized and padded.
- target (dict): The target dictionary containing 'boxes' and optional 'keypoints'.
- new_size (tuple): The target size for the image after resizing and padding.
Returns:
- PIL Image, dict: The resized and padded image and its updated target dictionary.
"""
original_size = image.size
# Calculate scale to fit the new size while maintaining aspect ratio
scale = min(new_size[0] / original_size[0], new_size[1] / original_size[1])
new_scaled_size = (int(original_size[0] * scale), int(original_size[1] * scale))
target['boxes'] = resize_boxes(target['boxes'], (image.size[0],image.size[1]), (new_scaled_size))
if 'area' in target:
target['area'] = (target['boxes'][:, 3] - target['boxes'][:, 1]) * (target['boxes'][:, 2] - target['boxes'][:, 0])
if 'keypoints' in target:
for i in range(len(target['keypoints'])):
target['keypoints'][i] = resize_keypoints(target['keypoints'][i], (image.size[0],image.size[1]), (new_scaled_size))
# Resize image to new scaled size
image = F.resize(image, (new_scaled_size[1], new_scaled_size[0]))
# Pad the resized image to make it exactly the desired size
padding = [0, 0, new_size[0] - new_scaled_size[0], new_size[1] - new_scaled_size[1]]
image = F.pad(image, padding, fill=200, padding_mode='edge')
return image, target
class BPMN_Dataset(Dataset):
def __init__(self, annotations, transform=None, crop_transform=None, crop_prob=0.3, rotate_90_proba=0.2,
flip_transform=None, rotate_transform=None, new_size=(1333, 1333), keep_ratio=0.1, resize=True, model_type='object'):
"""
Initialize the BPMN_Dataset with annotations and optional transformations.
Parameters:
- annotations (list): List of annotations for the dataset.
- transform (callable, optional): Transformation function to apply to each image.
- crop_transform (callable, optional): Custom cropping transformation.
- crop_prob (float): Probability of applying the crop transformation.
- rotate_90_proba (float): Probability of rotating the image by 90 degrees.
- flip_transform (callable, optional): Custom flipping transformation.
- rotate_transform (callable, optional): Custom rotation transformation.
- new_size (tuple): Target size for the images.
- keep_ratio (float): Probability of keeping the aspect ratio during resizing.
- resize (bool): Flag indicating whether to resize images after transformations.
- model_type (str): Type of model ('object' or 'arrow') to determine the target dictionary.
"""
self.annotations = annotations
print(f"Loaded {len(self.annotations)} annotations.")
self.transform = transform
self.crop_transform = crop_transform
self.crop_prob = crop_prob
self.flip_transform = flip_transform
self.rotate_transform = rotate_transform
self.resize = resize
self.new_size = new_size
self.keep_ratio = keep_ratio
self.model_type = model_type
if model_type == 'object':
self.dict = object_dict
elif model_type == 'arrow':
self.dict = arrow_dict
self.rotate_90_proba = rotate_90_proba
def __len__(self):
"""
Return the number of annotations in the dataset.
Returns:
- int: The number of annotations.
"""
return len(self.annotations)
def __getitem__(self, idx):
"""
Get an item (image and target) from the dataset at the specified index.
Parameters:
- idx (int): The index of the item to retrieve.
Returns:
- PIL Image, dict: The transformed image and its updated target dictionary.
"""
annotation = self.annotations[idx]
image = annotation.img.convert("RGB")
boxes = torch.tensor(np.array(annotation.boxes_ltrb), dtype=torch.float32)
labels_names = [ann for ann in annotation.categories]
# Only keep the labels, boxes, and keypoints that are in the class_dict
kept_indices = [i for i, ann in enumerate(annotation.categories) if ann in self.dict.values()]
boxes = boxes[kept_indices]
labels_names = [ann for i, ann in enumerate(labels_names) if i in kept_indices]
# Replace any subprocess by task
labels_names = ['task' if ann == 'subProcess' else ann for ann in labels_names]
labels_id = torch.tensor([(list(self.dict.values()).index(ann)) for ann in labels_names], dtype=torch.int64)
# Initialize keypoints tensor
max_keypoints = 2
keypoints = torch.zeros((len(labels_id), max_keypoints, 3), dtype=torch.float32)
ii = 0
for i, ann in enumerate(annotation.annotations):
# Only keep the keypoints that are in the kept indices
if i not in kept_indices:
continue
if ann.category in ["sequenceFlow", "messageFlow", "dataAssociation"]:
# Fill the keypoints tensor for this annotation, mark as visible (1)
kp = np.array(ann.keypoints, dtype=np.float32).reshape(-1, 3)
kp = kp[:, :2]
visible = np.ones((kp.shape[0], 1), dtype=np.float32)
kp = np.hstack([kp, visible])
keypoints[ii, :kp.shape[0], :] = torch.tensor(kp, dtype=torch.float32)
ii += 1
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
if self.model_type == 'object':
target = {
"boxes": boxes,
"labels": labels_id,
# "area": area,
}
elif self.model_type == 'arrow':
target = {
"boxes": boxes,
"labels": labels_id,
# "area": area,
"keypoints": keypoints,
}
# Randomly apply flip transform
if self.flip_transform:
image, target = self.flip_transform(image, target)
# Randomly apply rotate transform
if self.rotate_transform:
image, target = self.rotate_transform(image, target)
# Randomly apply the custom cropping transform
if self.crop_transform and random.random() < self.crop_prob:
image, target = self.crop_transform(image, target)
# Rotate vertical image
if random.random() < self.rotate_90_proba:
image, target = rotate_vertical(image, target)
if self.resize:
if random.random() < self.keep_ratio:
# Center and pad the image while keeping the aspect ratio
image, target = resize_and_pad(image, target, self.new_size)
else:
target['boxes'] = resize_boxes(target['boxes'], (image.size[0], image.size[1]), self.new_size)
if 'area' in target:
target['area'] = (target['boxes'][:, 3] - target['boxes'][:, 1]) * (target['boxes'][:, 2] - target['boxes'][:, 0])
if 'keypoints' in target:
for i in range(len(target['keypoints'])):
target['keypoints'][i] = resize_keypoints(target['keypoints'][i], (image.size[0], image.size[1]), self.new_size)
image = F.resize(image, (self.new_size[1], self.new_size[0]))
return self.transform(image), target
def collate_fn(batch):
"""
Custom collation function for DataLoader that handles batches of images and targets.
This function ensures that images are properly batched together using PyTorch's default collation,
while keeping the targets (such as bounding boxes and labels) in a list of dictionaries,
as each image might have a different number of objects detected.
Parameters:
- batch (list): A list of tuples, where each tuple contains an image and its corresponding target dictionary.
Returns:
- Tuple containing:
- Tensor: Batched images.
- List of dicts: Targets corresponding to each image in the batch.
"""
images, targets = zip(*batch) # Unzip the batch into separate lists for images and targets.
# Batch images using the default collate function which handles tensors, numpy arrays, numbers, etc.
images = default_collate(images)
return images, targets
def create_loader(new_size, transformation, annotations1, annotations2=None,
batch_size=4, crop_prob=0.0, crop_fraction=0.7, min_objects=3,
h_flip_prob=0.0, v_flip_prob=0.0, max_rotate_deg=5, rotate_90_proba=0.0, rotate_proba=0.0,
seed=42, resize=True, keep_ratio=1, model_type='object'):
"""
Create a DataLoader for BPMN datasets with optional transformations and concatenation of two datasets.
Parameters:
- new_size (tuple): The target size for the images.
- transformation (callable): Transformation function to apply to each image (e.g., normalization).
- annotations1 (list): Primary list of annotations.
- annotations2 (list, optional): Secondary list of annotations to concatenate with the first.
- batch_size (int): Number of images per batch.
- crop_prob (float): Probability of applying the crop transformation.
- crop_fraction (float): Fraction of the original width to use when cropping.
- min_objects (int): Minimum number of objects required to be within the crop.
- h_flip_prob (float): Probability of applying horizontal flip.
- v_flip_prob (float): Probability of applying vertical flip.
- max_rotate_deg (int): Maximum degree to rotate the image.
- rotate_90_proba (float): Probability of rotating the image by 90 degrees.
- rotate_proba (float): Probability of applying rotation to the image.
- seed (int): Seed for random number generators for reproducibility.
- resize (bool): Flag indicating whether to resize images after transformations.
- keep_ratio (float): Probability of keeping the aspect ratio during resizing.
- model_type (str): Type of model ('object' or 'arrow') to determine the target dictionary.
Returns:
- DataLoader: Configured data loader for the dataset.
"""
# Initialize custom transformations for cropping and flipping
custom_crop_transform = RandomCrop(new_size, crop_fraction, min_objects)
custom_flip_transform = RandomFlip(h_flip_prob, v_flip_prob)
custom_rotate_transform = RandomRotate(max_rotate_deg, rotate_proba)
# Create the primary dataset
dataset = BPMN_Dataset(
annotations=annotations1,
transform=transformation,
crop_transform=custom_crop_transform,
crop_prob=crop_prob,
rotate_90_proba=rotate_90_proba,
flip_transform=custom_flip_transform,
rotate_transform=custom_rotate_transform,
new_size=new_size,
keep_ratio=keep_ratio,
model_type=model_type,
resize=resize
)
# Optionally concatenate a second dataset
if annotations2:
dataset2 = BPMN_Dataset(
annotations=annotations2,
transform=transformation,
crop_transform=custom_crop_transform,
crop_prob=crop_prob,
rotate_90_proba=rotate_90_proba,
flip_transform=custom_flip_transform,
new_size=new_size,
keep_ratio=keep_ratio,
model_type=model_type,
resize=resize
)
dataset = ConcatDataset([dataset, dataset2]) # Concatenate the two datasets
# Set the seed for reproducibility in random operations within transformations and data loading
random.seed(seed)
torch.manual_seed(seed)
# Create the DataLoader with the dataset
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
return data_loader
|