Elena commited on
Commit
dd98268
·
verified ·
1 Parent(s): 7b50ed5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -3,17 +3,17 @@ from tensorflow.keras.models import load_model
3
  import numpy as np
4
  from PIL import Image
5
 
 
6
  model = load_model('xray_image_classifier_model.keras')
7
 
8
  def predict(image):
 
9
  img = image.resize((150, 150))
10
  img_array = np.array(img) / 255.0
11
  img_array = np.expand_dims(img_array, axis=0)
12
 
13
- # Make a prediction
14
  prediction = model.predict(img_array)
15
  predicted_class = 'Pneumonia' if prediction > 0.5 else 'Normal'
16
-
17
  return predicted_class
18
 
19
 
@@ -55,7 +55,13 @@ css = """
55
  }
56
  """
57
 
58
- # Gradio interface set up
 
 
 
 
 
 
59
  with gr.Blocks(css=css) as interface:
60
  gr.Markdown("<h1>Chest X-ray Pneumonia Classifier</h1>")
61
  gr.Markdown("<p>Upload an X-ray image to classify it as 'Pneumonia' or 'Normal'.</p>")
@@ -67,4 +73,7 @@ with gr.Blocks(css=css) as interface:
67
  submit_btn = gr.Button("Classify X-ray", elem_classes=["gr-button"])
68
  submit_btn.click(fn=predict, inputs=image_input, outputs=output)
69
 
 
 
 
70
  interface.launch()
 
3
  import numpy as np
4
  from PIL import Image
5
 
6
+
7
  model = load_model('xray_image_classifier_model.keras')
8
 
9
  def predict(image):
10
+
11
  img = image.resize((150, 150))
12
  img_array = np.array(img) / 255.0
13
  img_array = np.expand_dims(img_array, axis=0)
14
 
 
15
  prediction = model.predict(img_array)
16
  predicted_class = 'Pneumonia' if prediction > 0.5 else 'Normal'
 
17
  return predicted_class
18
 
19
 
 
55
  }
56
  """
57
 
58
+
59
+ examples = [
60
+ ["samples/normal_xray1.jpg"],
61
+ ["samples/pneumonia_xray1.jpg"],
62
+ ]
63
+
64
+ # Gradio interface set up instructions
65
  with gr.Blocks(css=css) as interface:
66
  gr.Markdown("<h1>Chest X-ray Pneumonia Classifier</h1>")
67
  gr.Markdown("<p>Upload an X-ray image to classify it as 'Pneumonia' or 'Normal'.</p>")
 
73
  submit_btn = gr.Button("Classify X-ray", elem_classes=["gr-button"])
74
  submit_btn.click(fn=predict, inputs=image_input, outputs=output)
75
 
76
+
77
+ gr.Examples(examples=examples, inputs=image_input)
78
+
79
  interface.launch()