|
import gradio as gr |
|
from tensorflow.keras.models import load_model |
|
from PIL import Image |
|
import numpy as np |
|
|
|
model = load_model('xray_image_classifier_model.keras') |
|
|
|
def predict_image(img): |
|
img = img.resize((150, 150)) |
|
img = np.array(img) / 255.0 |
|
img = np.expand_dims(img, axis=0) |
|
prediction = model.predict(img) |
|
label = 'Pneumonia' if prediction > 0.5 else 'Normal' |
|
return label |
|
|
|
iface = gr.Interface( |
|
fn=predict_image, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs="text", |
|
title="X-ray Image Classifier", |
|
description="Upload an X-ray image to classify it as 'Pneumonia' or 'Normal'." |
|
) |
|
|
|
iface.launch() |
|
|