Spaces:
Running
Running
""" | |
Speech Recognition Module using Whisper Large-v3 | |
Handles audio preprocessing and transcription | |
""" | |
import logging | |
import numpy as np | |
logger = logging.getLogger(__name__) | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor | |
from pydub import AudioSegment | |
import soundfile as sf # Add this import | |
def transcribe_audio(audio_path): | |
""" | |
Convert audio file to text using Whisper ASR model | |
Args: | |
audio_path: Path to input audio file | |
Returns: | |
Transcribed English text | |
""" | |
logger.info(f"Starting transcription for: {audio_path}") | |
try: | |
# Audio conversion | |
logger.info("Converting audio format") | |
audio = AudioSegment.from_file(audio_path) | |
processed_audio = audio.set_frame_rate(16000).set_channels(1) | |
wav_path = audio_path.replace(".mp3", ".wav") | |
processed_audio.export(wav_path, format="wav") | |
logger.info(f"Audio converted to: {wav_path}") | |
# Model initialization | |
logger.info("Loading Whisper model") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
logger.info(f"Using device: {device}") | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
"openai/whisper-large-v3", | |
torch_dtype=torch.float32, | |
low_cpu_mem_usage=True, | |
use_safetensors=True | |
).to(device) | |
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3") | |
logger.info("Model loaded successfully") | |
# Processing | |
logger.info("Processing audio input") | |
logger.debug("Loading audio data") | |
audio_data, sample_rate = sf.read(wav_path) | |
audio_data = audio_data.astype(np.float32) | |
# Increase chunk length and stride for longer transcriptions | |
inputs = processor( | |
audio_data, | |
sampling_rate=16000, | |
return_tensors="pt", | |
# Increase chunk length to handle longer segments | |
chunk_length_s=60, # Increased from 30 | |
stride_length_s=10 # Increased from 5 | |
).to(device) | |
# Transcription | |
logger.info("Generating transcription") | |
with torch.no_grad(): | |
# Add max_length parameter to allow for longer outputs | |
outputs = model.generate( | |
**inputs, | |
language="en", | |
task="transcribe", | |
max_length=448, # Explicitly set max output length | |
no_repeat_ngram_size=3 # Prevent repetition in output | |
) | |
result = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
logger.info(f"transcription: %s" % result) | |
logger.info(f"Transcription completed successfully") | |
return result | |
except Exception as e: | |
logger.error(f"Transcription failed: {str(e)}", exc_info=True) | |
raise |