Michael Hu
add dia tts model. Since dia is not yet released to pypi, we pull in the source directly
9c4b958
import time
from enum import Enum
import dac
import numpy as np
import torch
import torchaudio
from .audio import apply_audio_delay, build_delay_indices, build_revert_indices, decode, revert_audio_delay
from .config import DiaConfig
from .layers import DiaModel
from .state import DecoderInferenceState, DecoderOutput, EncoderInferenceState
DEFAULT_SAMPLE_RATE = 44100
def _get_default_device():
if torch.cuda.is_available():
return torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")
def _sample_next_token(
logits_BCxV: torch.Tensor,
temperature: float,
top_p: float,
cfg_filter_top_k: int | None = None,
) -> torch.Tensor:
if temperature == 0.0:
return torch.argmax(logits_BCxV, dim=-1)
logits_BCxV = logits_BCxV / temperature
if cfg_filter_top_k is not None:
_, top_k_indices_BCxV = torch.topk(logits_BCxV, k=cfg_filter_top_k, dim=-1)
mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
mask.scatter_(dim=-1, index=top_k_indices_BCxV, value=False)
logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)
if top_p < 1.0:
probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(probs_BCxV, dim=-1, descending=True)
cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)
sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
sorted_indices_to_remove_BCxV[..., 1:] = sorted_indices_to_remove_BCxV[..., :-1].clone()
sorted_indices_to_remove_BCxV[..., 0] = 0
indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
indices_to_remove_BCxV.scatter_(dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV)
logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)
final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
sampled_indices_C = sampled_indices_BC.squeeze(-1)
return sampled_indices_C
class ComputeDtype(str, Enum):
FLOAT32 = "float32"
FLOAT16 = "float16"
BFLOAT16 = "bfloat16"
def to_dtype(self) -> torch.dtype:
if self == ComputeDtype.FLOAT32:
return torch.float32
elif self == ComputeDtype.FLOAT16:
return torch.float16
elif self == ComputeDtype.BFLOAT16:
return torch.bfloat16
else:
raise ValueError(f"Unsupported compute dtype: {self}")
class Dia:
def __init__(
self,
config: DiaConfig,
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
device: torch.device | None = None,
):
"""Initializes the Dia model.
Args:
config: The configuration object for the model.
device: The device to load the model onto. If None, will automatically select the best available device.
Raises:
RuntimeError: If there is an error loading the DAC model.
"""
super().__init__()
self.config = config
self.device = device if device is not None else _get_default_device()
if isinstance(compute_dtype, str):
compute_dtype = ComputeDtype(compute_dtype)
self.compute_dtype = compute_dtype.to_dtype()
self.model = DiaModel(config, self.compute_dtype)
self.dac_model = None
@classmethod
def from_local(
cls,
config_path: str,
checkpoint_path: str,
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
device: torch.device | None = None,
) -> "Dia":
"""Loads the Dia model from local configuration and checkpoint files.
Args:
config_path: Path to the configuration JSON file.
checkpoint_path: Path to the model checkpoint (.pth) file.
device: The device to load the model onto. If None, will automatically select the best available device.
Returns:
An instance of the Dia model loaded with weights and set to eval mode.
Raises:
FileNotFoundError: If the config or checkpoint file is not found.
RuntimeError: If there is an error loading the checkpoint.
"""
config = DiaConfig.load(config_path)
if config is None:
raise FileNotFoundError(f"Config file not found at {config_path}")
dia = cls(config, compute_dtype, device)
try:
state_dict = torch.load(checkpoint_path, map_location=dia.device)
dia.model.load_state_dict(state_dict)
except FileNotFoundError:
raise FileNotFoundError(f"Checkpoint file not found at {checkpoint_path}")
except Exception as e:
raise RuntimeError(f"Error loading checkpoint from {checkpoint_path}") from e
dia.model.to(dia.device)
dia.model.eval()
dia._load_dac_model()
return dia
@classmethod
def from_pretrained(
cls,
model_name: str = "nari-labs/Dia-1.6B",
compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
device: torch.device | None = None,
) -> "Dia":
"""Loads the Dia model from a Hugging Face Hub repository.
Downloads the configuration and checkpoint files from the specified
repository ID and then loads the model.
Args:
model_name: The Hugging Face Hub repository ID (e.g., "nari-labs/Dia-1.6B").
compute_dtype: The computation dtype to use.
device: The device to load the model onto. If None, will automatically select the best available device.
Returns:
An instance of the Dia model loaded with weights and set to eval mode.
Raises:
FileNotFoundError: If config or checkpoint download/loading fails.
RuntimeError: If there is an error loading the checkpoint.
"""
if isinstance(compute_dtype, str):
compute_dtype = ComputeDtype(compute_dtype)
loaded_model = DiaModel.from_pretrained(model_name, compute_dtype=compute_dtype.to_dtype())
config = loaded_model.config
dia = cls(config, compute_dtype, device)
dia.model = loaded_model
dia.model.to(dia.device)
dia.model.eval()
dia._load_dac_model()
return dia
def _load_dac_model(self):
try:
dac_model_path = dac.utils.download()
dac_model = dac.DAC.load(dac_model_path).to(self.device)
except Exception as e:
raise RuntimeError("Failed to load DAC model") from e
self.dac_model = dac_model
def _prepare_text_input(self, text: str) -> torch.Tensor:
"""Encodes text prompt, pads, and creates attention mask and positions."""
text_pad_value = self.config.data.text_pad_value
max_len = self.config.data.text_length
byte_text = text.encode("utf-8")
replaced_bytes = byte_text.replace(b"[S1]", b"\x01").replace(b"[S2]", b"\x02")
text_tokens = list(replaced_bytes)
current_len = len(text_tokens)
padding_needed = max_len - current_len
if padding_needed <= 0:
text_tokens = text_tokens[:max_len]
padded_text_np = np.array(text_tokens, dtype=np.uint8)
else:
padded_text_np = np.pad(
text_tokens,
(0, padding_needed),
mode="constant",
constant_values=text_pad_value,
).astype(np.uint8)
src_tokens = torch.from_numpy(padded_text_np).to(torch.long).to(self.device).unsqueeze(0) # [1, S]
return src_tokens
def _prepare_audio_prompt(self, audio_prompt: torch.Tensor | None) -> tuple[torch.Tensor, int]:
num_channels = self.config.data.channels
audio_bos_value = self.config.data.audio_bos_value
audio_pad_value = self.config.data.audio_pad_value
delay_pattern = self.config.data.delay_pattern
max_delay_pattern = max(delay_pattern)
prefill = torch.full(
(1, num_channels),
fill_value=audio_bos_value,
dtype=torch.int,
device=self.device,
)
prefill_step = 1
if audio_prompt is not None:
prefill_step += audio_prompt.shape[0]
prefill = torch.cat([prefill, audio_prompt], dim=0)
delay_pad_tensor = torch.full(
(max_delay_pattern, num_channels), fill_value=-1, dtype=torch.int, device=self.device
)
prefill = torch.cat([prefill, delay_pad_tensor], dim=0)
delay_precomp = build_delay_indices(
B=1,
T=prefill.shape[0],
C=num_channels,
delay_pattern=delay_pattern,
)
prefill = apply_audio_delay(
audio_BxTxC=prefill.unsqueeze(0),
pad_value=audio_pad_value,
bos_value=audio_bos_value,
precomp=delay_precomp,
).squeeze(0)
return prefill, prefill_step
def _prepare_generation(self, text: str, audio_prompt: str | torch.Tensor | None, verbose: bool):
enc_input_cond = self._prepare_text_input(text)
enc_input_uncond = torch.zeros_like(enc_input_cond)
enc_input = torch.cat([enc_input_uncond, enc_input_cond], dim=0)
if isinstance(audio_prompt, str):
audio_prompt = self.load_audio(audio_prompt)
prefill, prefill_step = self._prepare_audio_prompt(audio_prompt)
if verbose:
print("generate: data loaded")
enc_state = EncoderInferenceState.new(self.config, enc_input_cond)
encoder_out = self.model.encoder(enc_input, enc_state)
dec_cross_attn_cache = self.model.decoder.precompute_cross_attn_cache(encoder_out, enc_state.positions)
dec_state = DecoderInferenceState.new(
self.config, enc_state, encoder_out, dec_cross_attn_cache, self.compute_dtype
)
dec_output = DecoderOutput.new(self.config, self.device)
dec_output.prefill(prefill, prefill_step)
dec_step = prefill_step - 1
if dec_step > 0:
dec_state.prepare_step(0, dec_step)
tokens_BxTxC = dec_output.get_tokens_at(0, dec_step).unsqueeze(0).expand(2, -1, -1)
self.model.decoder.forward(tokens_BxTxC, dec_state)
return dec_state, dec_output
def _decoder_step(
self,
tokens_Bx1xC: torch.Tensor,
dec_state: DecoderInferenceState,
cfg_scale: float,
temperature: float,
top_p: float,
cfg_filter_top_k: int,
) -> torch.Tensor:
audio_eos_value = self.config.data.audio_eos_value
logits_Bx1xCxV = self.model.decoder.decode_step(tokens_Bx1xC, dec_state)
logits_last_BxCxV = logits_Bx1xCxV[:, -1, :, :]
uncond_logits_CxV = logits_last_BxCxV[0, :, :]
cond_logits_CxV = logits_last_BxCxV[1, :, :]
logits_CxV = cond_logits_CxV + cfg_scale * (cond_logits_CxV - uncond_logits_CxV)
logits_CxV[:, audio_eos_value + 1 :] = -torch.inf
logits_CxV[1:, audio_eos_value:] = -torch.inf
pred_C = _sample_next_token(
logits_CxV.float(),
temperature=temperature,
top_p=top_p,
cfg_filter_top_k=cfg_filter_top_k,
)
return pred_C
def _generate_output(self, generated_codes: torch.Tensor) -> np.ndarray:
num_channels = self.config.data.channels
seq_length = generated_codes.shape[0]
delay_pattern = self.config.data.delay_pattern
audio_pad_value = self.config.data.audio_pad_value
max_delay_pattern = max(delay_pattern)
revert_precomp = build_revert_indices(
B=1,
T=seq_length,
C=num_channels,
delay_pattern=delay_pattern,
)
codebook = revert_audio_delay(
audio_BxTxC=generated_codes.unsqueeze(0),
pad_value=audio_pad_value,
precomp=revert_precomp,
T=seq_length,
)[:, :-max_delay_pattern, :]
min_valid_index = 0
max_valid_index = 1023
invalid_mask = (codebook < min_valid_index) | (codebook > max_valid_index)
codebook[invalid_mask] = 0
audio = decode(self.dac_model, codebook.transpose(1, 2))
return audio.squeeze().cpu().numpy()
def load_audio(self, audio_path: str) -> torch.Tensor:
audio, sr = torchaudio.load(audio_path, channels_first=True) # C, T
if sr != DEFAULT_SAMPLE_RATE:
audio = torchaudio.functional.resample(audio, sr, DEFAULT_SAMPLE_RATE)
audio = audio.to(self.device).unsqueeze(0) # 1, C, T
audio_data = self.dac_model.preprocess(audio, DEFAULT_SAMPLE_RATE)
_, encoded_frame, _, _, _ = self.dac_model.encode(audio_data) # 1, C, T
return encoded_frame.squeeze(0).transpose(0, 1)
def save_audio(self, path: str, audio: np.ndarray):
import soundfile as sf
sf.write(path, audio, DEFAULT_SAMPLE_RATE)
@torch.inference_mode()
def generate(
self,
text: str,
max_tokens: int | None = None,
cfg_scale: float = 3.0,
temperature: float = 1.3,
top_p: float = 0.95,
use_torch_compile: bool = False,
cfg_filter_top_k: int = 35,
audio_prompt: str | torch.Tensor | None = None,
audio_prompt_path: str | None = None,
use_cfg_filter: bool | None = None,
verbose: bool = False,
) -> np.ndarray:
audio_eos_value = self.config.data.audio_eos_value
audio_pad_value = self.config.data.audio_pad_value
delay_pattern = self.config.data.delay_pattern
max_tokens = self.config.data.audio_length if max_tokens is None else max_tokens
max_delay_pattern = max(delay_pattern)
self.model.eval()
if audio_prompt_path:
print("Warning: audio_prompt_path is deprecated. Use audio_prompt instead.")
audio_prompt = audio_prompt_path
if use_cfg_filter is not None:
print("Warning: use_cfg_filter is deprecated.")
if verbose:
total_start_time = time.time()
dec_state, dec_output = self._prepare_generation(text, audio_prompt, verbose)
dec_step = dec_output.prefill_step - 1
bos_countdown = max_delay_pattern
eos_detected = False
eos_countdown = -1
if use_torch_compile:
step_fn = torch.compile(self._decoder_step, mode="default")
else:
step_fn = self._decoder_step
if verbose:
print("generate: starting generation loop")
if use_torch_compile:
print("generate: by using use_torch_compile=True, the first step would take long")
start_time = time.time()
while dec_step < max_tokens:
dec_state.prepare_step(dec_step)
tokens_Bx1xC = dec_output.get_tokens_at(dec_step).unsqueeze(0).expand(2, -1, -1)
pred_C = step_fn(
tokens_Bx1xC,
dec_state,
cfg_scale,
temperature,
top_p,
cfg_filter_top_k,
)
if (not eos_detected and pred_C[0] == audio_eos_value) or dec_step == max_tokens - max_delay_pattern - 1:
eos_detected = True
eos_countdown = max_delay_pattern
if eos_countdown > 0:
step_after_eos = max_delay_pattern - eos_countdown
for i, d in enumerate(delay_pattern):
if step_after_eos == d:
pred_C[i] = audio_eos_value
elif step_after_eos > d:
pred_C[i] = audio_pad_value
eos_countdown -= 1
bos_countdown = max(0, bos_countdown - 1)
dec_output.update_one(pred_C, dec_step + 1, bos_countdown > 0)
if eos_countdown == 0:
break
dec_step += 1
if verbose and dec_step % 86 == 0:
duration = time.time() - start_time
print(
f"generate step {dec_step}: speed={86 / duration:.3f} tokens/s, realtime factor={1 / duration:.3f}x"
)
start_time = time.time()
if dec_output.prefill_step >= dec_step + 1:
print("Warning: Nothing generated")
return None
generated_codes = dec_output.generated_tokens[dec_output.prefill_step : dec_step + 1, :]
if verbose:
total_step = dec_step + 1 - dec_output.prefill_step
total_duration = time.time() - total_start_time
print(f"generate: total step={total_step}, total duration={total_duration:.3f}s")
return self._generate_output(generated_codes)