Spaces:
Running
Running
""" | |
Speech Recognition Module using Whisper Large-v3 | |
Handles audio preprocessing and transcription | |
""" | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor | |
from pydub import AudioSegment | |
def transcribe_audio(audio_path): | |
""" | |
Convert audio file to text using Whisper ASR model | |
Args: | |
audio_path: Path to input audio file | |
Returns: | |
Transcribed English text | |
""" | |
# Configure hardware settings | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Convert to proper audio format | |
audio = AudioSegment.from_file(audio_path) | |
processed_audio = audio.set_frame_rate(16000).set_channels(1) | |
wav_path = audio_path.replace(".mp3", ".wav") | |
processed_audio.export(wav_path, format="wav") | |
# Initialize ASR model | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
"openai/whisper-large-v3", | |
torch_dtype=torch.float32, | |
low_cpu_mem_usage=True, | |
use_safetensors=True | |
).to(device) | |
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3") | |
# Process audio input | |
inputs = processor( | |
wav_path, | |
sampling_rate=16000, | |
return_tensors="pt", | |
truncation=True, | |
chunk_length_s=30, | |
stride_length_s=5 | |
).to(device) | |
# Generate transcription | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, language="en", task="transcribe") | |
return processor.batch_decode(outputs, skip_special_tokens=True)[0] |