Spaces:
Running
Running
File size: 1,956 Bytes
cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
"""
Text Translation Module using NLLB-3.3B model
Handles text segmentation and batch translation
"""
import logging
logger = logging.getLogger(__name__)
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
def translate_text(text):
"""
Translate English text to Simplified Chinese
Args:
text: Input English text
Returns:
Translated Chinese text
"""
logger.info(f"Starting translation for text length: {len(text)}")
try:
# Model initialization
logger.info("Loading NLLB model")
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-3.3B")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-3.3B")
logger.debug("Translation model loaded")
# Text processing
max_chunk_length = 1000
text_chunks = [text[i:i+max_chunk_length] for i in range(0, len(text), max_chunk_length)]
logger.info(f"Split text into {len(text_chunks)} chunks")
translated_chunks = []
for i, chunk in enumerate(text_chunks):
logger.debug(f"Processing chunk {i+1}/{len(text_chunks)}")
inputs = tokenizer(
chunk,
return_tensors="pt",
max_length=1024,
truncation=True
)
outputs = model.generate(
**inputs,
forced_bos_token_id=tokenizer.lang_code_to_id["zho_Hans"],
max_new_tokens=1024
)
translated = tokenizer.decode(outputs[0], skip_special_tokens=True)
translated_chunks.append(translated)
logger.debug(f"Chunk {i+1} translated successfully")
result = "".join(translated_chunks)
logger.info(f"Translation completed. Total length: {len(result)}")
return result
except Exception as e:
logger.error(f"Translation failed: {str(e)}", exc_info=True)
raise |