File size: 5,926 Bytes
cd1309d
 
 
 
 
c72d839
 
 
 
 
 
 
 
 
 
 
 
cd1309d
 
 
2d2f2b9
cd1309d
 
a602e5e
cd1309d
2d2f2b9
 
 
c72d839
2d2f2b9
 
 
 
c72d839
2d2f2b9
c72d839
2d2f2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c72d839
2d2f2b9
 
 
 
 
 
 
 
cd1309d
 
 
 
 
 
c72d839
cd1309d
 
 
 
 
 
 
 
 
 
 
2d2f2b9
cd1309d
 
 
 
 
 
 
 
 
 
c72d839
cd1309d
 
 
 
 
c72d839
cd1309d
c72d839
 
cd1309d
c72d839
 
cd1309d
c72d839
cd1309d
c72d839
 
cd1309d
c72d839
 
cd1309d
c72d839
cd1309d
c72d839
 
cd1309d
c72d839
 
cd1309d
c72d839
 
cd1309d
 
 
 
 
c72d839
cd1309d
 
 
 
 
 
c72d839
cd1309d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c72d839
a602e5e
cd1309d
 
 
 
 
 
 
 
 
 
 
c72d839
cd1309d
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
Main entry point for the Audio Translation Web Application
Handles file upload, processing pipeline, and UI rendering
"""

# Configure logging first
import logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("app.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

import streamlit as st
import os
import time
import subprocess
from utils.stt import transcribe_audio
from utils.translation import translate_text
from utils.tts_dummy import generate_speech

# Hugging Face Spaces Setup Automation
def setup_huggingface_space():
    """Automatically configure Hugging Face Space requirements"""
    logger.debug("Running Hugging Face space setup")
    st.sidebar.header("Space Configuration")
    
    try:
        subprocess.run(["espeak-ng", "--version"], check=True, capture_output=True)
        logger.debug("espeak-ng verification successful")
    except (FileNotFoundError, subprocess.CalledProcessError):
        logger.error("Missing espeak-ng dependency")
        st.sidebar.error("""
        **Missing System Dependencies!** Add this to your Space settings:
        ```txt
        apt-get update && apt-get install -y espeak-ng
        ```
        """)
        st.stop()

    model_dir = "./kokoro"
    required_files = [
        f"{model_dir}/kokoro-v0_19.pth",
        f"{model_dir}/voices/af_bella.pt"
    ]
    
    if not all(os.path.exists(f) for f in required_files):
        logger.error("Missing model files in %s", model_dir)
        st.sidebar.warning("""
        **Missing Model Files!** Add this to your Space settings:
        ```txt
        git clone https://huggingface.co/hexgrad/Kokoro-82M ./kokoro
        ```
        """)
        st.stop()

# Initialize environment configurations
os.makedirs("temp/uploads", exist_ok=True)
os.makedirs("temp/outputs", exist_ok=True)

def configure_page():
    """Set up Streamlit page configuration"""
    logger.debug("Configuring Streamlit page")
    st.set_page_config(
        page_title="Audio Translator",
        page_icon="🎧",
        layout="wide",
        initial_sidebar_state="expanded"
    )
    st.markdown("""
        <style>
            .reportview-container {margin-top: -2em;}
            #MainMenu {visibility: hidden;}
            .stDeployButton {display:none;}
            .stAlert {padding: 20px !important;}
        </style>
    """, unsafe_allow_html=True)

def handle_file_processing(upload_path):
    """
    Execute the complete processing pipeline:
    1. Speech-to-Text (STT)
    2. Machine Translation
    3. Text-to-Speech (TTS)
    """
    logger.info(f"Starting processing for: {upload_path}")
    progress_bar = st.progress(0)
    status_text = st.empty()
    
    try:
        # STT Phase
        logger.debug("Beginning STT processing")
        status_text.markdown("πŸ” **Performing Speech Recognition...**")
        with st.spinner("Initializing Whisper model..."):
            english_text = transcribe_audio(upload_path)
        progress_bar.progress(30)
        logger.info(f"STT completed. Text length: {len(english_text)} characters")

        # Translation Phase
        logger.debug("Beginning translation")
        status_text.markdown("🌐 **Translating Content...**")
        with st.spinner("Loading translation model..."):
            chinese_text = translate_text(english_text)
        progress_bar.progress(60)
        logger.info(f"Translation completed. Translated length: {len(chinese_text)} characters")

        # TTS Phase
        logger.debug("Beginning TTS generation")
        status_text.markdown("🎡 **Generating Chinese Speech...**")
        with st.spinner("Initializing TTS engine..."):
            output_path = generate_speech(chinese_text, language="zh")
        progress_bar.progress(100)
        logger.info(f"TTS completed. Output file: {output_path}")
        
        
        # Display results

        # Display results
        status_text.success("βœ… Processing Complete!")
        return english_text, chinese_text, output_path
        
    except Exception as e:
        logger.error(f"Processing failed: {str(e)}", exc_info=True)
        status_text.error(f"❌ Processing Failed: {str(e)}")
        st.exception(e)
        raise

def render_results(english_text, chinese_text, output_path):
    """Display processing results in organized columns"""
    logger.debug("Rendering results")
    st.divider()
    
    col1, col2 = st.columns([2, 1])
    with col1:
        st.subheader("Recognition Results")
        st.code(english_text, language="text")
        
        st.subheader("Translation Results")
        st.code(chinese_text, language="text")

    with col2:
        st.subheader("Audio Output")
        st.audio(output_path)
        with open(output_path, "rb") as f:
            st.download_button(
                label="Download Audio",
                data=f,
                file_name="translated_audio.wav",
                mime="audio/wav"
            )

def main():
    """Main application workflow"""
    logger.info("Starting application")
    # setup_huggingface_space()  # First-run configuration checks
    configure_page()
    st.title("🎧 High-Quality Audio Translation System")
    st.markdown("Upload English Audio β†’ Get Chinese Speech Output")

    uploaded_file = st.file_uploader(
        "Select Audio File (MP3/WAV)",
        type=["mp3", "wav"],
        accept_multiple_files=False
    )

    if uploaded_file:
        logger.info(f"File uploaded: {uploaded_file.name}")
        upload_path = os.path.join("temp/uploads", uploaded_file.name)
        with open(upload_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        
        results = handle_file_processing(upload_path)
        if results:
            render_results(*results)

if __name__ == "__main__":
    main()