Spaces:
Running
Running
File size: 5,926 Bytes
cd1309d c72d839 cd1309d 2d2f2b9 cd1309d a602e5e cd1309d 2d2f2b9 c72d839 2d2f2b9 c72d839 2d2f2b9 c72d839 2d2f2b9 c72d839 2d2f2b9 cd1309d c72d839 cd1309d 2d2f2b9 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 cd1309d c72d839 a602e5e cd1309d c72d839 cd1309d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
"""
Main entry point for the Audio Translation Web Application
Handles file upload, processing pipeline, and UI rendering
"""
# Configure logging first
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
import streamlit as st
import os
import time
import subprocess
from utils.stt import transcribe_audio
from utils.translation import translate_text
from utils.tts_dummy import generate_speech
# Hugging Face Spaces Setup Automation
def setup_huggingface_space():
"""Automatically configure Hugging Face Space requirements"""
logger.debug("Running Hugging Face space setup")
st.sidebar.header("Space Configuration")
try:
subprocess.run(["espeak-ng", "--version"], check=True, capture_output=True)
logger.debug("espeak-ng verification successful")
except (FileNotFoundError, subprocess.CalledProcessError):
logger.error("Missing espeak-ng dependency")
st.sidebar.error("""
**Missing System Dependencies!** Add this to your Space settings:
```txt
apt-get update && apt-get install -y espeak-ng
```
""")
st.stop()
model_dir = "./kokoro"
required_files = [
f"{model_dir}/kokoro-v0_19.pth",
f"{model_dir}/voices/af_bella.pt"
]
if not all(os.path.exists(f) for f in required_files):
logger.error("Missing model files in %s", model_dir)
st.sidebar.warning("""
**Missing Model Files!** Add this to your Space settings:
```txt
git clone https://huggingface.co/hexgrad/Kokoro-82M ./kokoro
```
""")
st.stop()
# Initialize environment configurations
os.makedirs("temp/uploads", exist_ok=True)
os.makedirs("temp/outputs", exist_ok=True)
def configure_page():
"""Set up Streamlit page configuration"""
logger.debug("Configuring Streamlit page")
st.set_page_config(
page_title="Audio Translator",
page_icon="π§",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.reportview-container {margin-top: -2em;}
#MainMenu {visibility: hidden;}
.stDeployButton {display:none;}
.stAlert {padding: 20px !important;}
</style>
""", unsafe_allow_html=True)
def handle_file_processing(upload_path):
"""
Execute the complete processing pipeline:
1. Speech-to-Text (STT)
2. Machine Translation
3. Text-to-Speech (TTS)
"""
logger.info(f"Starting processing for: {upload_path}")
progress_bar = st.progress(0)
status_text = st.empty()
try:
# STT Phase
logger.debug("Beginning STT processing")
status_text.markdown("π **Performing Speech Recognition...**")
with st.spinner("Initializing Whisper model..."):
english_text = transcribe_audio(upload_path)
progress_bar.progress(30)
logger.info(f"STT completed. Text length: {len(english_text)} characters")
# Translation Phase
logger.debug("Beginning translation")
status_text.markdown("π **Translating Content...**")
with st.spinner("Loading translation model..."):
chinese_text = translate_text(english_text)
progress_bar.progress(60)
logger.info(f"Translation completed. Translated length: {len(chinese_text)} characters")
# TTS Phase
logger.debug("Beginning TTS generation")
status_text.markdown("π΅ **Generating Chinese Speech...**")
with st.spinner("Initializing TTS engine..."):
output_path = generate_speech(chinese_text, language="zh")
progress_bar.progress(100)
logger.info(f"TTS completed. Output file: {output_path}")
# Display results
# Display results
status_text.success("β
Processing Complete!")
return english_text, chinese_text, output_path
except Exception as e:
logger.error(f"Processing failed: {str(e)}", exc_info=True)
status_text.error(f"β Processing Failed: {str(e)}")
st.exception(e)
raise
def render_results(english_text, chinese_text, output_path):
"""Display processing results in organized columns"""
logger.debug("Rendering results")
st.divider()
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Recognition Results")
st.code(english_text, language="text")
st.subheader("Translation Results")
st.code(chinese_text, language="text")
with col2:
st.subheader("Audio Output")
st.audio(output_path)
with open(output_path, "rb") as f:
st.download_button(
label="Download Audio",
data=f,
file_name="translated_audio.wav",
mime="audio/wav"
)
def main():
"""Main application workflow"""
logger.info("Starting application")
# setup_huggingface_space() # First-run configuration checks
configure_page()
st.title("π§ High-Quality Audio Translation System")
st.markdown("Upload English Audio β Get Chinese Speech Output")
uploaded_file = st.file_uploader(
"Select Audio File (MP3/WAV)",
type=["mp3", "wav"],
accept_multiple_files=False
)
if uploaded_file:
logger.info(f"File uploaded: {uploaded_file.name}")
upload_path = os.path.join("temp/uploads", uploaded_file.name)
with open(upload_path, "wb") as f:
f.write(uploaded_file.getbuffer())
results = handle_file_processing(upload_path)
if results:
render_results(*results)
if __name__ == "__main__":
main() |