Spaces:
Running
Running
File size: 17,343 Bytes
9c8546d c72d839 9740afc 9c8546d c72d839 7b25fdd 7eff88c 7b25fdd 7eff88c 7b25fdd 7eff88c 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7eff88c 9c8546d 9740afc 7b25fdd 9740afc 7b25fdd 9740afc c72d839 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd c72d839 9740afc 7b25fdd 9c8546d 9740afc 7b25fdd 9740afc 7b25fdd 9740afc c72d839 9c8546d c72d839 9740afc c72d839 9740afc c72d839 9740afc 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd c72d839 7b25fdd 933cc7f 9740afc 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 91223c9 7b25fdd 9740afc 7b25fdd 9740afc 91223c9 9740afc 91223c9 9740afc 91223c9 9740afc 91223c9 933cc7f 9740afc 91223c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import os
import logging
import time
import soundfile as sf
logger = logging.getLogger(__name__)
# Flag to track TTS engine availability
KOKORO_AVAILABLE = False
DIA_AVAILABLE = False
# Try to import Kokoro first
try:
from kokoro import KPipeline
KOKORO_AVAILABLE = True
logger.info("Kokoro TTS engine is available")
except AttributeError as e:
# Specifically catch the EspeakWrapper.set_data_path error
if "EspeakWrapper" in str(e) and "set_data_path" in str(e):
logger.warning("Kokoro import failed due to EspeakWrapper.set_data_path issue")
else:
# Re-raise if it's a different error
logger.error(f"Kokoro import failed with unexpected error: {str(e)}")
raise
except ImportError:
logger.warning("Kokoro TTS engine is not available")
# Try to import Dia as fallback
if not KOKORO_AVAILABLE:
try:
logger.info("Attempting to import Dia TTS engine as fallback")
try:
# Check if required dependencies for Dia are available
import torch
logger.info("PyTorch is available for Dia TTS")
except ImportError as torch_err:
logger.error(f"PyTorch dependency for Dia TTS is missing: {str(torch_err)}")
raise ImportError(f"PyTorch dependency required for Dia TTS: {str(torch_err)}") from torch_err
# Try to import the Dia module
try:
from utils.tts_dia import _get_model as get_dia_model
logger.info("Successfully imported Dia TTS module")
# Verify the model can be accessed
logger.info("Verifying Dia model can be accessed")
model_info = get_dia_model.__module__
logger.info(f"Dia model module: {model_info}")
DIA_AVAILABLE = True
logger.info("Dia TTS engine is available as fallback")
except ImportError as module_err:
logger.error(f"Failed to import Dia TTS module: {str(module_err)}")
logger.error(f"Module path: {module_err.__traceback__.tb_frame.f_globals.get('__file__', 'unknown')}")
raise
except AttributeError as attr_err:
logger.error(f"Dia TTS module attribute error: {str(attr_err)}")
logger.error(f"This may indicate the module exists but has incorrect structure")
raise
except ImportError as e:
logger.error(f"Dia TTS engine is not available due to import error: {str(e)}")
logger.error(f"Import path attempted: {e.__traceback__.tb_frame.f_globals.get('__name__', 'unknown')}")
logger.warning("Will use dummy TTS implementation as fallback")
except Exception as e:
logger.error(f"Unexpected error initializing Dia TTS: {str(e)}")
logger.error(f"Error type: {type(e).__name__}")
logger.error("Will use dummy TTS implementation as fallback")
class TTSEngine:
def __init__(self, lang_code='z'):
"""Initialize TTS Engine with Kokoro or Dia as fallback
Args:
lang_code (str): Language code ('a' for US English, 'b' for British English,
'j' for Japanese, 'z' for Mandarin Chinese)
Note: lang_code is only used for Kokoro, not for Dia
"""
logger.info("Initializing TTS Engine")
logger.info(f"Available engines - Kokoro: {KOKORO_AVAILABLE}, Dia: {DIA_AVAILABLE}")
self.engine_type = None
if KOKORO_AVAILABLE:
logger.info(f"Using Kokoro as primary TTS engine with language code: {lang_code}")
try:
self.pipeline = KPipeline(lang_code=lang_code)
self.engine_type = "kokoro"
logger.info("TTS engine successfully initialized with Kokoro")
except Exception as kokoro_err:
logger.error(f"Failed to initialize Kokoro pipeline: {str(kokoro_err)}")
logger.error(f"Error type: {type(kokoro_err).__name__}")
logger.info("Will try to fall back to Dia TTS engine")
# Fall through to try Dia
# Try Dia if Kokoro is not available or failed to initialize
if self.engine_type is None and DIA_AVAILABLE:
logger.info("Using Dia as fallback TTS engine")
# For Dia, we don't need to initialize anything here
# The model will be lazy-loaded when needed
self.pipeline = None
self.engine_type = "dia"
logger.info("TTS engine initialized with Dia (lazy loading)")
# Use dummy if no TTS engines are available
if self.engine_type is None:
logger.warning("Using dummy TTS implementation as no TTS engines are available")
logger.warning("Check logs above for specific errors that prevented Kokoro or Dia initialization")
self.pipeline = None
self.engine_type = "dummy"
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
"""Generate speech from text using available TTS engine
Args:
text (str): Input text to synthesize
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
Note: voice parameter is only used for Kokoro, not for Dia
speed (float): Speech speed multiplier (0.5 to 2.0)
Note: speed parameter is only used for Kokoro, not for Dia
Returns:
str: Path to the generated audio file
"""
logger.info(f"Generating speech for text length: {len(text)}")
try:
# Create output directory if it doesn't exist
os.makedirs("temp/outputs", exist_ok=True)
# Generate unique output path
output_path = f"temp/outputs/output_{int(time.time())}.wav"
# Use the appropriate TTS engine based on availability
if self.engine_type == "kokoro":
# Use Kokoro for TTS generation
generator = self.pipeline(text, voice=voice, speed=speed)
for _, _, audio in generator:
logger.info(f"Saving Kokoro audio to {output_path}")
sf.write(output_path, audio, 24000)
break
elif self.engine_type == "dia":
# Use Dia for TTS generation
try:
logger.info("Attempting to use Dia TTS for speech generation")
# Import here to avoid circular imports
try:
logger.info("Importing Dia speech generation module")
from utils.tts_dia import generate_speech as dia_generate_speech
logger.info("Successfully imported Dia speech generation function")
except ImportError as import_err:
logger.error(f"Failed to import Dia speech generation function: {str(import_err)}")
logger.error(f"Import path: {import_err.__traceback__.tb_frame.f_globals.get('__name__', 'unknown')}")
raise
# Call Dia's generate_speech function
logger.info("Calling Dia's generate_speech function")
output_path = dia_generate_speech(text)
logger.info(f"Generated audio with Dia: {output_path}")
except ImportError as import_err:
logger.error(f"Dia TTS generation failed due to import error: {str(import_err)}")
logger.error("Falling back to dummy audio generation")
return self._generate_dummy_audio(output_path)
except Exception as dia_error:
logger.error(f"Dia TTS generation failed: {str(dia_error)}", exc_info=True)
logger.error(f"Error type: {type(dia_error).__name__}")
logger.error("Falling back to dummy audio generation")
# Fall back to dummy audio if Dia fails
return self._generate_dummy_audio(output_path)
else:
# Generate dummy audio as fallback
return self._generate_dummy_audio(output_path)
logger.info(f"Audio generation complete: {output_path}")
return output_path
except Exception as e:
logger.error(f"TTS generation failed: {str(e)}", exc_info=True)
raise
def _generate_dummy_audio(self, output_path):
"""Generate a dummy audio file with a simple sine wave
Args:
output_path (str): Path to save the dummy audio file
Returns:
str: Path to the generated dummy audio file
"""
import numpy as np
sample_rate = 24000
duration = 3.0 # seconds
t = np.linspace(0, duration, int(sample_rate * duration), False)
tone = np.sin(2 * np.pi * 440 * t) * 0.3
logger.info(f"Saving dummy audio to {output_path}")
sf.write(output_path, tone, sample_rate)
logger.info(f"Dummy audio generation complete: {output_path}")
return output_path
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0):
"""Generate speech from text and yield each segment
Args:
text (str): Input text to synthesize
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
speed (float): Speech speed multiplier (0.5 to 2.0)
Yields:
tuple: (sample_rate, audio_data) pairs for each segment
"""
try:
# Use the appropriate TTS engine based on availability
if self.engine_type == "kokoro":
# Use Kokoro for streaming TTS
generator = self.pipeline(text, voice=voice, speed=speed)
for _, _, audio in generator:
yield 24000, audio
elif self.engine_type == "dia":
# Dia doesn't support streaming natively, so we generate the full audio
# and then yield it as a single chunk
try:
logger.info("Attempting to use Dia TTS for speech streaming")
# Import here to avoid circular imports
try:
logger.info("Importing required modules for Dia streaming")
import torch
logger.info("PyTorch successfully imported for Dia streaming")
try:
from utils.tts_dia import _get_model, DEFAULT_SAMPLE_RATE
logger.info("Successfully imported Dia model and sample rate")
except ImportError as import_err:
logger.error(f"Failed to import Dia model for streaming: {str(import_err)}")
logger.error(f"Import path: {import_err.__traceback__.tb_frame.f_globals.get('__name__', 'unknown')}")
raise
except ImportError as torch_err:
logger.error(f"PyTorch import failed for Dia streaming: {str(torch_err)}")
raise
# Get the Dia model
logger.info("Getting Dia model instance")
try:
model = _get_model()
logger.info("Successfully obtained Dia model instance")
except Exception as model_err:
logger.error(f"Failed to get Dia model instance: {str(model_err)}")
logger.error(f"Error type: {type(model_err).__name__}")
raise
# Generate audio
logger.info("Generating audio with Dia model")
with torch.inference_mode():
output_audio_np = model.generate(
text,
max_tokens=None,
cfg_scale=3.0,
temperature=1.3,
top_p=0.95,
cfg_filter_top_k=35,
use_torch_compile=False,
verbose=False
)
if output_audio_np is not None:
logger.info(f"Successfully generated audio with Dia (length: {len(output_audio_np)})")
yield DEFAULT_SAMPLE_RATE, output_audio_np
else:
logger.warning("Dia model returned None for audio output")
logger.warning("Falling back to dummy audio stream")
# Fall back to dummy audio if Dia fails
yield from self._generate_dummy_audio_stream()
except ImportError as import_err:
logger.error(f"Dia TTS streaming failed due to import error: {str(import_err)}")
logger.error("Falling back to dummy audio stream")
# Fall back to dummy audio if Dia fails
yield from self._generate_dummy_audio_stream()
except Exception as dia_error:
logger.error(f"Dia TTS streaming failed: {str(dia_error)}", exc_info=True)
logger.error(f"Error type: {type(dia_error).__name__}")
logger.error("Falling back to dummy audio stream")
# Fall back to dummy audio if Dia fails
yield from self._generate_dummy_audio_stream()
else:
# Generate dummy audio chunks as fallback
yield from self._generate_dummy_audio_stream()
except Exception as e:
logger.error(f"TTS streaming failed: {str(e)}", exc_info=True)
raise
def _generate_dummy_audio_stream(self):
"""Generate dummy audio chunks with simple sine waves
Yields:
tuple: (sample_rate, audio_data) pairs for each dummy segment
"""
import numpy as np
sample_rate = 24000
duration = 1.0 # seconds per chunk
# Create 3 chunks of dummy audio
for i in range(3):
t = np.linspace(0, duration, int(sample_rate * duration), False)
freq = 440 + (i * 220) # Different frequency for each chunk
tone = np.sin(2 * np.pi * freq * t) * 0.3
yield sample_rate, tone
# Initialize TTS engine with cache decorator if using Streamlit
def get_tts_engine(lang_code='a'):
"""Get or create TTS engine instance
Args:
lang_code (str): Language code for the pipeline
Returns:
TTSEngine: Initialized TTS engine instance
"""
logger.info(f"Requesting TTS engine with language code: {lang_code}")
try:
import streamlit as st
logger.info("Streamlit detected, using cached TTS engine")
@st.cache_resource
def _get_engine():
logger.info("Creating cached TTS engine instance")
engine = TTSEngine(lang_code)
logger.info(f"Cached TTS engine created with type: {engine.engine_type}")
return engine
engine = _get_engine()
logger.info(f"Retrieved TTS engine from cache with type: {engine.engine_type}")
return engine
except ImportError:
logger.info("Streamlit not available, creating direct TTS engine instance")
engine = TTSEngine(lang_code)
logger.info(f"Direct TTS engine created with type: {engine.engine_type}")
return engine
def generate_speech(text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
"""Public interface for TTS generation
Args:
text (str): Input text to synthesize
voice (str): Voice ID to use
speed (float): Speech speed multiplier
Returns:
str: Path to generated audio file
"""
logger.info(f"Public generate_speech called with text length: {len(text)}, voice: {voice}, speed: {speed}")
try:
# Get the TTS engine
logger.info("Getting TTS engine instance")
engine = get_tts_engine()
logger.info(f"Using TTS engine type: {engine.engine_type}")
# Generate speech
logger.info("Calling engine.generate_speech")
output_path = engine.generate_speech(text, voice, speed)
logger.info(f"Speech generation complete, output path: {output_path}")
return output_path
except Exception as e:
logger.error(f"Error in public generate_speech function: {str(e)}", exc_info=True)
logger.error(f"Error type: {type(e).__name__}")
if hasattr(e, '__traceback__'):
tb = e.__traceback__
while tb.tb_next:
tb = tb.tb_next
logger.error(f"Error occurred in file: {tb.tb_frame.f_code.co_filename}, line {tb.tb_lineno}")
raise |