Spaces:
Sleeping
Sleeping
Upload Deliverable2.py
Browse files- Deliverable2.py +101 -0
Deliverable2.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled2.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1UPM7vEPoqKmrXRZqw6b0A2nri9S6mawa
|
8 |
+
"""
|
9 |
+
|
10 |
+
import requests
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
from sentence_transformers import SentenceTransformer, util
|
13 |
+
from transformers import pipeline
|
14 |
+
|
15 |
+
class URLValidator:
|
16 |
+
def __init__(self):
|
17 |
+
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
18 |
+
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
|
19 |
+
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
|
20 |
+
|
21 |
+
def fetch_page_content(self, url: str) -> str:
|
22 |
+
try:
|
23 |
+
response = requests.get(url, timeout=10)
|
24 |
+
response.raise_for_status()
|
25 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
26 |
+
return " ".join([p.text for p in soup.find_all("p")])
|
27 |
+
except requests.RequestException:
|
28 |
+
return ""
|
29 |
+
|
30 |
+
def compute_similarity_score(self, user_query: str, content: str) -> int:
|
31 |
+
if not content:
|
32 |
+
return 0
|
33 |
+
return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100)
|
34 |
+
|
35 |
+
def detect_bias(self, content: str) -> int:
|
36 |
+
if not content:
|
37 |
+
return 50
|
38 |
+
sentiment_result = self.sentiment_analyzer(content[:512])[0]
|
39 |
+
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30
|
40 |
+
|
41 |
+
def rate_url_validity(self, user_query: str, url: str) -> dict:
|
42 |
+
content = self.fetch_page_content(url)
|
43 |
+
similarity_score = self.compute_similarity_score(user_query, content)
|
44 |
+
bias_score = self.detect_bias(content)
|
45 |
+
return {
|
46 |
+
"Query": user_query,
|
47 |
+
"URL": url,
|
48 |
+
"Content Relevance": similarity_score,
|
49 |
+
"Bias Score": bias_score,
|
50 |
+
}
|
51 |
+
|
52 |
+
queries_urls = [
|
53 |
+
("Climate change effects", "https://www.nationalgeographic.com/environment/article/climate-change-overview"),
|
54 |
+
("COVID-19 vaccine effectiveness", "https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness.html"),
|
55 |
+
("Latest AI advancements", "https://www.technologyreview.com/topic/artificial-intelligence"),
|
56 |
+
("Stock market trends", "https://www.bloomberg.com/markets"),
|
57 |
+
("Healthy diet tips", "https://www.healthline.com/nutrition/healthy-eating-tips"),
|
58 |
+
("Space exploration missions", "https://www.nasa.gov/missions"),
|
59 |
+
("Electric vehicle benefits", "https://www.tesla.com/benefits"),
|
60 |
+
("History of the internet", "https://www.history.com/topics/inventions/history-of-the-internet"),
|
61 |
+
("Python programming tutorials", "https://realpython.com"),
|
62 |
+
("Mental health awareness", "https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response")
|
63 |
+
]
|
64 |
+
|
65 |
+
validator = URLValidator()
|
66 |
+
results = [validator.rate_url_validity(query, url) for query, url in queries_urls]
|
67 |
+
|
68 |
+
for result in results:
|
69 |
+
print(result)
|
70 |
+
|
71 |
+
# Generate formatted output for the 10 predefined queries and URLs
|
72 |
+
queries_urls = [
|
73 |
+
("Climate change effects", "https://www.nationalgeographic.com/environment/article/climate-change-overview"),
|
74 |
+
("COVID-19 vaccine effectiveness", "https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness.html"),
|
75 |
+
("Latest AI advancements", "https://www.technologyreview.com/topic/artificial-intelligence"),
|
76 |
+
("Stock market trends", "https://www.bloomberg.com/markets"),
|
77 |
+
("Healthy diet tips", "https://www.healthline.com/nutrition/healthy-eating-tips"),
|
78 |
+
("Space exploration missions", "https://www.nasa.gov/missions"),
|
79 |
+
("Electric vehicle benefits", "https://www.tesla.com/benefits"),
|
80 |
+
("History of the internet", "https://www.history.com/topics/inventions/history-of-the-internet"),
|
81 |
+
("Python programming tutorials", "https://realpython.com"),
|
82 |
+
("Mental health awareness", "https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response")
|
83 |
+
]
|
84 |
+
|
85 |
+
# Placeholder function ratings for demonstration
|
86 |
+
import random
|
87 |
+
|
88 |
+
formatted_output = []
|
89 |
+
|
90 |
+
for query, url in queries_urls:
|
91 |
+
output_entry = {
|
92 |
+
"Query": query,
|
93 |
+
"URL": url,
|
94 |
+
"Function Rating": random.randint(1, 5), # Simulated rating
|
95 |
+
"Custom Rating": random.randint(1, 5) # Simulated rating
|
96 |
+
}
|
97 |
+
formatted_output.append(output_entry)
|
98 |
+
|
99 |
+
# Display the formatted output
|
100 |
+
formatted_output
|
101 |
+
|