Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import torch
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
import os
|
5 |
from threading import Thread
|
|
|
6 |
|
7 |
# Define model path for caching (Avoids reloading every app restart)
|
8 |
MODEL_PATH = "/mnt/data/Phi-4-Hindi"
|
@@ -13,21 +14,28 @@ MODEL_NAME = "large-traversaal/Phi-4-Hindi"
|
|
13 |
@st.cache_resource()
|
14 |
def load_model():
|
15 |
with st.spinner("Loading model... Please wait ⏳"):
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
return model, tokenizer
|
28 |
|
29 |
# Load and move model to appropriate device
|
30 |
model, tok = load_model()
|
|
|
|
|
|
|
31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
try:
|
33 |
model = model.to(device)
|
@@ -117,7 +125,7 @@ if st.button("Send"):
|
|
117 |
for output in response_generator:
|
118 |
final_response = output # Store latest output
|
119 |
|
120 |
-
|
121 |
# Add generated response to session state
|
122 |
st.experimental_rerun()
|
123 |
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
import os
|
5 |
from threading import Thread
|
6 |
+
import requests
|
7 |
|
8 |
# Define model path for caching (Avoids reloading every app restart)
|
9 |
MODEL_PATH = "/mnt/data/Phi-4-Hindi"
|
|
|
14 |
@st.cache_resource()
|
15 |
def load_model():
|
16 |
with st.spinner("Loading model... Please wait ⏳"):
|
17 |
+
try:
|
18 |
+
if not os.path.exists(MODEL_PATH):
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
MODEL_NAME, token=TOKEN, trust_remote_code=True, torch_dtype=torch.bfloat16
|
21 |
+
)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=TOKEN)
|
23 |
+
model.save_pretrained(MODEL_PATH)
|
24 |
+
tokenizer.save_pretrained(MODEL_PATH)
|
25 |
+
else:
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
28 |
+
except requests.exceptions.ConnectionError:
|
29 |
+
st.error("⚠️ Connection error! Unable to download the model. Please check your internet connection and try again.")
|
30 |
+
return None, None
|
31 |
|
32 |
return model, tokenizer
|
33 |
|
34 |
# Load and move model to appropriate device
|
35 |
model, tok = load_model()
|
36 |
+
if model is None or tok is None:
|
37 |
+
st.stop()
|
38 |
+
|
39 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
try:
|
41 |
model = model.to(device)
|
|
|
125 |
for output in response_generator:
|
126 |
final_response = output # Store latest output
|
127 |
|
128 |
+
st.success("✅ Response generated!")
|
129 |
# Add generated response to session state
|
130 |
st.experimental_rerun()
|
131 |
|