phi-4-streamlit / app.py
DrishtiSharma's picture
Create app.py
c1786ee verified
raw
history blame
3.3 kB
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
import time
# Load Model and Tokenizer
token = os.environ.get("HF_TOKEN")
model_name = "large-traversaal/Phi-4-Hindi"
@st.cache_resource()
def load_model():
model = AutoModelForCausalLM.from_pretrained(
model_name,
token=token,
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
tok = AutoTokenizer.from_pretrained(model_name, token=token)
return model, tok
model, tok = load_model()
terminators = [tok.eos_token_id]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Initialize session state if not set
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Chat function
def chat(message, temperature, do_sample, max_tokens):
chat_log = st.session_state.chat_history.copy()
chat_log.append({"role": "user", "content": message})
messages = tok.apply_chat_template(chat_log, tokenize=False, add_generation_prompt=True)
model_inputs = tok([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"inputs": model_inputs["input_ids"],
"streamer": streamer,
"max_new_tokens": max_tokens,
"do_sample": do_sample,
"temperature": temperature,
"eos_token_id": terminators,
}
if temperature == 0:
generate_kwargs["do_sample"] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_text = ""
for new_text in streamer:
partial_text += new_text
yield partial_text
st.session_state.chat_history.append({"role": "assistant", "content": partial_text})
# Streamlit UI
st.title("πŸ’¬ Chat With Phi-4-Hindi")
st.markdown("Chat with [large-traversaal/Phi-4-Hindi](https://huggingface.co/large-traversaal/Phi-4-Hindi)")
# Chat input
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.3, 0.1)
do_sample = st.sidebar.checkbox("Use Sampling", value=True)
max_tokens = st.sidebar.slider("Max Tokens", 128, 4096, 512, 1)
text_color = st.sidebar.selectbox("Text Color", ["Red", "Black", "Blue", "Green", "Purple"], index=0)
dark_mode = st.sidebar.checkbox("πŸŒ™ Dark Mode", value=False)
def get_html_text(text, color):
return f'<p style="color: {color.lower()}; font-size: 16px;">{text}</p>'
for msg in st.session_state.chat_history:
if msg["role"] == "user":
st.markdown(get_html_text("πŸ‘€ " + msg["content"], "black"), unsafe_allow_html=True)
else:
st.markdown(get_html_text("πŸ€– " + msg["content"], text_color), unsafe_allow_html=True)
user_input = st.text_input("Type your message:", "")
if st.button("Send"):
if user_input.strip():
st.session_state.chat_history.append({"role": "user", "content": user_input})
with st.spinner("Generating response..."):
for output in chat(user_input, temperature, do_sample, max_tokens):
pass
st.experimental_rerun()
if st.button("🧹 Clear Chat"):
st.session_state.chat_history = []
st.experimental_rerun()