File size: 15,026 Bytes
f96f6d4 1191303 ec7ddd1 32575e3 ec7ddd1 493df63 ec7ddd1 32575e3 ae9100f 32575e3 ae9100f ec7ddd1 ae9100f 3570753 ec7ddd1 3570753 ec7ddd1 3570753 32575e3 cd866dd 3570753 32575e3 3570753 ec7ddd1 ae9100f ec7ddd1 32575e3 ec7ddd1 ae9100f ec7ddd1 32575e3 ec7ddd1 2fc3cdf e14555c 32575e3 ec7ddd1 ae9100f 32575e3 ae9100f ec7ddd1 64276e8 5b18cbd ec7ddd1 5b18cbd cd866dd a8b4ff8 ec7ddd1 cd866dd ec7ddd1 64276e8 7986235 32575e3 7986235 721c955 bf5580a 721c955 bf5580a 721c955 7986235 12a118d 7986235 64276e8 32575e3 62835ea 32575e3 ec7ddd1 e32fbfc e49cf2a 7a0f264 e49cf2a 7a0f264 e49cf2a 319dd59 616e47d ca3e624 32575e3 03cd4eb 7bd7b3e 32575e3 4aad40a ec7ddd1 3ed92ae ec7ddd1 b4411fc 32575e3 ec7ddd1 5158cbc 313e06c 608887a 16cee10 313e06c 7146722 b8be095 b4411fc 89636c2 5158cbc 89636c2 4aad40a 313e06c 608887a 16cee10 313e06c 32575e3 c1edf87 32575e3 b4411fc c1edf87 32575e3 4aad40a 32575e3 4aad40a 313e06c 608887a 16cee10 c1edf87 7986235 b4411fc c1edf87 32575e3 c1edf87 32575e3 5158cbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# add support for multiple pdf/pdf urls + audio query + generate qa audio
# include - key features of the app + limitations + future work + workflow diagram + sample outputs
#
import streamlit as st
import os
from openai import OpenAI
import tempfile
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import (
PyPDFLoader,
TextLoader,
CSVLoader
)
from datetime import datetime
from pydub import AudioSegment
import pytz
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
import os
import tempfile
from datetime import datetime
import pytz
class DocumentRAG:
def __init__(self):
self.document_store = None
self.qa_chain = None
self.document_summary = ""
self.chat_history = []
self.last_processed_time = None
self.api_key = os.getenv("OPENAI_API_KEY") # Fetch the API key from environment variable
self.init_time = datetime.now(pytz.UTC)
if not self.api_key:
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
# Persistent directory for Chroma to avoid tenant-related errors
self.chroma_persist_dir = "./chroma_storage"
os.makedirs(self.chroma_persist_dir, exist_ok=True)
def process_documents(self, uploaded_files):
"""Process uploaded files by saving them temporarily and extracting content."""
if not self.api_key:
return "Please set the OpenAI API key in the environment variables."
if not uploaded_files:
return "Please upload documents first."
try:
documents = []
for uploaded_file in uploaded_files:
# Save uploaded file to a temporary location
temp_file_path = tempfile.NamedTemporaryFile(
delete=False, suffix=os.path.splitext(uploaded_file.name)[1]
).name
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
# Determine the loader based on the file type
if temp_file_path.endswith('.pdf'):
loader = PyPDFLoader(temp_file_path)
elif temp_file_path.endswith('.txt'):
loader = TextLoader(temp_file_path)
elif temp_file_path.endswith('.csv'):
loader = CSVLoader(temp_file_path)
else:
return f"Unsupported file type: {uploaded_file.name}"
# Load the documents
try:
documents.extend(loader.load())
except Exception as e:
return f"Error loading {uploaded_file.name}: {str(e)}"
if not documents:
return "No valid documents were processed. Please check your files."
# Split text for better processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
documents = text_splitter.split_documents(documents)
# Combine text for later summary generation
self.document_text = " ".join([doc.page_content for doc in documents]) # Store for later use
# Create embeddings and initialize retrieval chain
embeddings = OpenAIEmbeddings(api_key=self.api_key)
self.document_store = Chroma.from_documents(
documents,
embeddings,
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
)
self.qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
self.document_store.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True,
verbose=False
)
self.last_processed_time = datetime.now(pytz.UTC)
return "Documents processed successfully!"
except Exception as e:
return f"Error processing documents: {str(e)}"
def generate_summary(self, text, language):
"""Generate a summary of the provided text focusing on specific sections in the specified language."""
if not self.api_key:
return "API Key not set. Please set it in the environment variables."
try:
client = OpenAI(api_key=self.api_key)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"""
Summarize the following document focusing mainly on these sections:
1. Abstract
2. In the Introduction, specifically focus on the portion where the key contributions of the research paper are highlighted.
3. Conclusion
4. Limitations
5. Future Work
Ensure the summary is concise, logically ordered, and suitable for {language}.
Provide 7-9 key points for discussion in a structured format."""},
{"role": "user", "content": text[:4000]}
],
temperature=0.3
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
def create_podcast(self, language):
"""Generate a podcast script and audio based on doc summary in the specified language."""
if not self.document_summary:
return "Please process documents before generating a podcast.", None
if not self.api_key:
return "Please set the OpenAI API key in the environment variables.", None
try:
client = OpenAI(api_key=self.api_key)
# Generate podcast script
script_response = client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"""
You are a professional podcast producer. Create a 1-2 minute structured podcast dialogue in {language}
based on the provided document summary. Follow this flow:
1. Brief Introduction of the Topic
2. Highlight the limitations of existing methods, the key contributions of the research paper, and its advantages over the current state of the art.
3. Discuss Limitations of the research work.
4. Present the Conclusion
5. Mention Future Work
Clearly label the dialogue as 'Host 1:' and 'Host 2:'. Maintain a tone that is engaging, conversational,
and insightful, while ensuring the flow remains logical and natural. Include a well-structured opening
to introduce the topic and a clear, thoughtful closing that provides a smooth conclusion, avoiding any
abrupt endings."""
},
{"role": "user", "content": f"""
Document Summary: {self.document_summary}"""}
],
temperature=0.7
)
script = script_response.choices[0].message.content
if not script:
return "Error: Failed to generate podcast script.", None
# Convert script to audio
final_audio = AudioSegment.empty()
is_first_speaker = True
lines = [line.strip() for line in script.split("\n") if line.strip()]
for line in lines:
if ":" not in line:
continue
speaker, text = line.split(":", 1)
if not text.strip():
continue
try:
voice = "nova" if is_first_speaker else "onyx"
audio_response = client.audio.speech.create(
model="tts-1",
voice=voice,
input=text.strip()
)
temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
audio_response.stream_to_file(temp_audio_file.name)
segment = AudioSegment.from_file(temp_audio_file.name)
final_audio += segment
final_audio += AudioSegment.silent(duration=300)
is_first_speaker = not is_first_speaker
except Exception as e:
print(f"Error generating audio for line: {text}")
print(f"Details: {e}")
continue
if len(final_audio) == 0:
return "Error: No audio could be generated.", None
output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
final_audio.export(output_file, format="mp3")
return script, output_file
except Exception as e:
return f"Error generating podcast: {str(e)}", None
def handle_query(self, question, history, language):
"""Handle user queries in the specified language."""
if not self.qa_chain:
return history + [("System", "Please process the documents first.")]
try:
preface = (
f"Instruction: Respond in {language}. Be professional and concise, "
f"keeping the response under 300 words. If you cannot provide an answer, say: "
f'"I am not sure about this question. Please try asking something else."'
)
query = f"{preface}\nQuery: {question}"
result = self.qa_chain({
"question": query,
"chat_history": [(q, a) for q, a in history]
})
if "answer" not in result:
return history + [("System", "Sorry, an error occurred.")]
history.append((question, result["answer"]))
return history
except Exception as e:
return history + [("System", f"Error: {str(e)}")]
# Initialize RAG system in session state
if "rag_system" not in st.session_state:
st.session_state.rag_system = DocumentRAG()
# Sidebar
with st.sidebar:
st.title("About")
st.markdown(
"""
This app is inspired by the [RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW).
It allows users to upload documents, generate summaries, ask questions, and create podcasts.
"""
)
st.markdown("### Steps:")
st.markdown("1. Upload documents.")
st.markdown("2. Generate summary.")
st.markdown("3. Ask questions.")
st.markdown("4. Create podcast.")
st.markdown("### Credits:")
st.markdown("Image Source: [Geeksforgeeks](https://www.geeksforgeeks.org/how-to-convert-document-into-podcast/)")
# Streamlit UI
st.title("Document Analyzer & Podcast Generator")
st.image("./cover_image.png", use_container_width=True)
# Step 1: Upload and Process Documents
st.subheader("Step 1: Upload and Process Documents")
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
if st.button("Process Documents"):
if uploaded_files:
with st.spinner("Processing documents, please wait..."):
result = st.session_state.rag_system.process_documents(uploaded_files)
if "successfully" in result:
st.success(result)
else:
st.error(result)
else:
st.warning("No files uploaded.")
# Step 2: Generate Summary
st.subheader("Step 2: Generate Summary")
st.write("Select Summary Language:")
summary_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
summary_language = st.radio(
"",
summary_language_options,
horizontal=True,
key="summary_language"
)
if st.button("Generate Summary"):
if hasattr(st.session_state.rag_system, "document_text") and st.session_state.rag_system.document_text:
with st.spinner("Generating summary, please wait..."):
summary = st.session_state.rag_system.generate_summary(st.session_state.rag_system.document_text, summary_language)
if summary:
st.session_state.rag_system.document_summary = summary
st.text_area("Document Summary", summary, height=200)
st.success("Summary generated successfully!")
else:
st.error("Failed to generate summary.")
else:
st.info("Please process documents first to generate summary.")
# Step 3: Ask Questions
st.subheader("Step 3: Ask Questions")
st.write("Select Q&A Language:")
qa_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
qa_language = st.radio(
"",
qa_language_options,
horizontal=True,
key="qa_language"
)
if st.session_state.rag_system.qa_chain:
history = []
user_question = st.text_input("Ask a question:")
if st.button("Submit Question"):
with st.spinner("Answering your question, please wait..."):
history = st.session_state.rag_system.handle_query(user_question, history, qa_language)
for question, answer in history:
st.chat_message("user").write(question)
st.chat_message("assistant").write(answer)
else:
st.info("Please process documents first to enable Q&A.")
# Step 4: Generate Podcast
st.subheader("Step 4: Generate Podcast")
st.write("Select Podcast Language:")
podcast_language_options = ["English", "Hindi", "Spanish", "French", "German", "Chinese", "Japanese"]
podcast_language = st.radio(
"",
podcast_language_options,
horizontal=True,
key="podcast_language"
)
if st.session_state.rag_system.document_summary:
if st.button("Generate Podcast"):
with st.spinner("Generating podcast, please wait..."):
script, audio_path = st.session_state.rag_system.create_podcast(podcast_language)
if audio_path:
st.text_area("Generated Podcast Script", script, height=200)
st.audio(audio_path, format="audio/mp3")
st.success("Podcast generated successfully! You can listen to it above.")
else:
st.error(script)
else:
st.info("Please process documents and generate summary before creating a podcast.")
|