DrishtiSharma commited on
Commit
4e7dff1
Β·
verified Β·
1 Parent(s): a417f74

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +141 -0
app.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import os
3
+ import re
4
+ import streamlit as st
5
+ import time
6
+
7
+ sys.path.append(os.path.abspath("."))
8
+ from langchain.chains import ConversationalRetrievalChain
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain.llms import OpenAI
11
+ from langchain.document_loaders import UnstructuredPDFLoader
12
+ from langchain.vectorstores import Chroma
13
+ from langchain.embeddings import HuggingFaceEmbeddings
14
+ from langchain.text_splitter import NLTKTextSplitter
15
+ from patent_downloader import PatentDownloader
16
+
17
+ PERSISTED_DIRECTORY = "."
18
+
19
+ # Fetch API key securely from the environment
20
+ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
21
+ if not OPENAI_API_KEY:
22
+ st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
23
+ st.stop()
24
+
25
+ def load_docs(document_path):
26
+ loader = UnstructuredPDFLoader(document_path)
27
+ documents = loader.load()
28
+ text_splitter = NLTKTextSplitter(chunk_size=1000)
29
+ return text_splitter.split_documents(documents)
30
+
31
+ def already_indexed(vectordb, file_name):
32
+ indexed_sources = set(
33
+ x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
34
+ )
35
+ return file_name in indexed_sources
36
+
37
+ def load_chain(file_name=None):
38
+ loaded_patent = st.session_state.get("LOADED_PATENT")
39
+
40
+ vectordb = Chroma(
41
+ persist_directory=PERSISTED_DIRECTORY,
42
+ embedding_function=HuggingFaceEmbeddings(),
43
+ )
44
+ if loaded_patent == file_name or already_indexed(vectordb, file_name):
45
+ st.write("Already indexed")
46
+ else:
47
+ vectordb.delete_collection()
48
+ docs = load_docs(file_name)
49
+ st.write("Length: ", len(docs))
50
+
51
+ vectordb = Chroma.from_documents(
52
+ docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
53
+ )
54
+ vectordb.persist()
55
+ st.session_state["LOADED_PATENT"] = file_name
56
+
57
+ memory = ConversationBufferMemory(
58
+ memory_key="chat_history",
59
+ return_messages=True,
60
+ input_key="question",
61
+ output_key="answer",
62
+ )
63
+ return ConversationalRetrievalChain.from_llm(
64
+ OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
65
+ vectordb.as_retriever(search_kwargs={"k": 3}),
66
+ return_source_documents=False,
67
+ memory=memory,
68
+ )
69
+
70
+ def extract_patent_number(url):
71
+ pattern = r"/patent/([A-Z]{2}\d+)"
72
+ match = re.search(pattern, url)
73
+ return match.group(1) if match else None
74
+
75
+ def download_pdf(patent_number):
76
+ patent_downloader = PatentDownloader()
77
+ patent_downloader.download(patent=patent_number)
78
+ return f"{patent_number}.pdf"
79
+
80
+ if __name__ == "__main__":
81
+ st.set_page_config(
82
+ page_title="Patent Chat: Google Patents Chat Demo",
83
+ page_icon="πŸ“–",
84
+ layout="wide",
85
+ initial_sidebar_state="expanded",
86
+ )
87
+ st.header("πŸ“– Patent Chat: Google Patents Chat Demo")
88
+
89
+ # Allow user to input the Google patent link
90
+ patent_link = st.text_input("Enter Google Patent Link:", key="PATENT_LINK")
91
+
92
+ if not patent_link:
93
+ st.warning("Please enter a Google patent link to proceed.")
94
+ st.stop()
95
+ else:
96
+ st.session_state["patent_link_configured"] = True
97
+
98
+ patent_number = extract_patent_number(patent_link)
99
+ if not patent_number:
100
+ st.error("Invalid patent link format. Please provide a valid Google patent link.")
101
+ st.stop()
102
+
103
+ st.write("Patent number: ", patent_number)
104
+
105
+ pdf_path = f"{patent_number}.pdf"
106
+ if os.path.isfile(pdf_path):
107
+ st.write("File already downloaded.")
108
+ else:
109
+ st.write("Downloading patent file...")
110
+ pdf_path = download_pdf(patent_number)
111
+ st.write("File downloaded.")
112
+
113
+ chain = load_chain(pdf_path)
114
+
115
+ if "messages" not in st.session_state:
116
+ st.session_state["messages"] = [
117
+ {"role": "assistant", "content": "How can I help you?"}
118
+ ]
119
+
120
+ for message in st.session_state.messages:
121
+ with st.chat_message(message["role"]):
122
+ st.markdown(message["content"])
123
+
124
+ if user_input := st.chat_input("What is your question?"):
125
+ st.session_state.messages.append({"role": "user", "content": user_input})
126
+ with st.chat_message("user"):
127
+ st.markdown(user_input)
128
+
129
+ with st.chat_message("assistant"):
130
+ message_placeholder = st.empty()
131
+ full_response = ""
132
+
133
+ with st.spinner("CHAT-BOT is at Work ..."):
134
+ assistant_response = chain({"question": user_input})
135
+ for chunk in assistant_response["answer"].split():
136
+ full_response += chunk + " "
137
+ time.sleep(0.05)
138
+ message_placeholder.markdown(full_response + "β–Œ")
139
+ st.session_state.messages.append(
140
+ {"role": "assistant", "content": full_response}
141
+ )