Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import streamlit as st
|
5 |
+
import time
|
6 |
+
|
7 |
+
sys.path.append(os.path.abspath("."))
|
8 |
+
from langchain.chains import ConversationalRetrievalChain
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from langchain.llms import OpenAI
|
11 |
+
from langchain.document_loaders import UnstructuredPDFLoader
|
12 |
+
from langchain.vectorstores import Chroma
|
13 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
+
from langchain.text_splitter import NLTKTextSplitter
|
15 |
+
from patent_downloader import PatentDownloader
|
16 |
+
|
17 |
+
PERSISTED_DIRECTORY = "."
|
18 |
+
|
19 |
+
# Fetch API key securely from the environment
|
20 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
21 |
+
if not OPENAI_API_KEY:
|
22 |
+
st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
|
23 |
+
st.stop()
|
24 |
+
|
25 |
+
def load_docs(document_path):
|
26 |
+
loader = UnstructuredPDFLoader(document_path)
|
27 |
+
documents = loader.load()
|
28 |
+
text_splitter = NLTKTextSplitter(chunk_size=1000)
|
29 |
+
return text_splitter.split_documents(documents)
|
30 |
+
|
31 |
+
def already_indexed(vectordb, file_name):
|
32 |
+
indexed_sources = set(
|
33 |
+
x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
|
34 |
+
)
|
35 |
+
return file_name in indexed_sources
|
36 |
+
|
37 |
+
def load_chain(file_name=None):
|
38 |
+
loaded_patent = st.session_state.get("LOADED_PATENT")
|
39 |
+
|
40 |
+
vectordb = Chroma(
|
41 |
+
persist_directory=PERSISTED_DIRECTORY,
|
42 |
+
embedding_function=HuggingFaceEmbeddings(),
|
43 |
+
)
|
44 |
+
if loaded_patent == file_name or already_indexed(vectordb, file_name):
|
45 |
+
st.write("Already indexed")
|
46 |
+
else:
|
47 |
+
vectordb.delete_collection()
|
48 |
+
docs = load_docs(file_name)
|
49 |
+
st.write("Length: ", len(docs))
|
50 |
+
|
51 |
+
vectordb = Chroma.from_documents(
|
52 |
+
docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
|
53 |
+
)
|
54 |
+
vectordb.persist()
|
55 |
+
st.session_state["LOADED_PATENT"] = file_name
|
56 |
+
|
57 |
+
memory = ConversationBufferMemory(
|
58 |
+
memory_key="chat_history",
|
59 |
+
return_messages=True,
|
60 |
+
input_key="question",
|
61 |
+
output_key="answer",
|
62 |
+
)
|
63 |
+
return ConversationalRetrievalChain.from_llm(
|
64 |
+
OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
|
65 |
+
vectordb.as_retriever(search_kwargs={"k": 3}),
|
66 |
+
return_source_documents=False,
|
67 |
+
memory=memory,
|
68 |
+
)
|
69 |
+
|
70 |
+
def extract_patent_number(url):
|
71 |
+
pattern = r"/patent/([A-Z]{2}\d+)"
|
72 |
+
match = re.search(pattern, url)
|
73 |
+
return match.group(1) if match else None
|
74 |
+
|
75 |
+
def download_pdf(patent_number):
|
76 |
+
patent_downloader = PatentDownloader()
|
77 |
+
patent_downloader.download(patent=patent_number)
|
78 |
+
return f"{patent_number}.pdf"
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
st.set_page_config(
|
82 |
+
page_title="Patent Chat: Google Patents Chat Demo",
|
83 |
+
page_icon="π",
|
84 |
+
layout="wide",
|
85 |
+
initial_sidebar_state="expanded",
|
86 |
+
)
|
87 |
+
st.header("π Patent Chat: Google Patents Chat Demo")
|
88 |
+
|
89 |
+
# Allow user to input the Google patent link
|
90 |
+
patent_link = st.text_input("Enter Google Patent Link:", key="PATENT_LINK")
|
91 |
+
|
92 |
+
if not patent_link:
|
93 |
+
st.warning("Please enter a Google patent link to proceed.")
|
94 |
+
st.stop()
|
95 |
+
else:
|
96 |
+
st.session_state["patent_link_configured"] = True
|
97 |
+
|
98 |
+
patent_number = extract_patent_number(patent_link)
|
99 |
+
if not patent_number:
|
100 |
+
st.error("Invalid patent link format. Please provide a valid Google patent link.")
|
101 |
+
st.stop()
|
102 |
+
|
103 |
+
st.write("Patent number: ", patent_number)
|
104 |
+
|
105 |
+
pdf_path = f"{patent_number}.pdf"
|
106 |
+
if os.path.isfile(pdf_path):
|
107 |
+
st.write("File already downloaded.")
|
108 |
+
else:
|
109 |
+
st.write("Downloading patent file...")
|
110 |
+
pdf_path = download_pdf(patent_number)
|
111 |
+
st.write("File downloaded.")
|
112 |
+
|
113 |
+
chain = load_chain(pdf_path)
|
114 |
+
|
115 |
+
if "messages" not in st.session_state:
|
116 |
+
st.session_state["messages"] = [
|
117 |
+
{"role": "assistant", "content": "How can I help you?"}
|
118 |
+
]
|
119 |
+
|
120 |
+
for message in st.session_state.messages:
|
121 |
+
with st.chat_message(message["role"]):
|
122 |
+
st.markdown(message["content"])
|
123 |
+
|
124 |
+
if user_input := st.chat_input("What is your question?"):
|
125 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
126 |
+
with st.chat_message("user"):
|
127 |
+
st.markdown(user_input)
|
128 |
+
|
129 |
+
with st.chat_message("assistant"):
|
130 |
+
message_placeholder = st.empty()
|
131 |
+
full_response = ""
|
132 |
+
|
133 |
+
with st.spinner("CHAT-BOT is at Work ..."):
|
134 |
+
assistant_response = chain({"question": user_input})
|
135 |
+
for chunk in assistant_response["answer"].split():
|
136 |
+
full_response += chunk + " "
|
137 |
+
time.sleep(0.05)
|
138 |
+
message_placeholder.markdown(full_response + "β")
|
139 |
+
st.session_state.messages.append(
|
140 |
+
{"role": "assistant", "content": full_response}
|
141 |
+
)
|