File size: 6,427 Bytes
7f17ee4 630b3cc 7f17ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import sys
import os
import re
import shutil
import time
import streamlit as st
import nltk
# Ensure NLTK 'punkt' resource is downloaded
nltk_data_path = os.path.join(os.getcwd(), "nltk_data")
os.makedirs(nltk_data_path, exist_ok=True)
nltk.data.path.append(nltk_data_path)
# Force download of the 'punkt' resource
try:
print("Ensuring NLTK 'punkt' resource is downloaded...")
nltk.download("punkt", download_dir=nltk_data_path)
except Exception as e:
print(f"Error downloading NLTK 'punkt': {e}")
sys.path.append(os.path.abspath("."))
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import NLTKTextSplitter
from patent_downloader import PatentDownloader
PERSISTED_DIRECTORY = "."
# Fetch API key securely from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
st.stop()
def check_poppler_installed():
if not shutil.which("pdfinfo"):
raise EnvironmentError(
"Poppler is not installed or not in PATH. Install 'poppler-utils' for PDF processing."
)
check_poppler_installed()
def load_docs(document_path):
try:
loader = UnstructuredPDFLoader(
document_path,
mode="elements",
strategy="fast",
ocr_languages=None # Explicitly disable OCR
)
documents = loader.load()
text_splitter = NLTKTextSplitter(chunk_size=1000)
return text_splitter.split_documents(documents)
except Exception as e:
st.error(f"Failed to load and process PDF: {e}")
st.stop()
def already_indexed(vectordb, file_name):
indexed_sources = set(
x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
)
return file_name in indexed_sources
def load_chain(file_name=None):
loaded_patent = st.session_state.get("LOADED_PATENT")
vectordb = Chroma(
persist_directory=PERSISTED_DIRECTORY,
embedding_function=HuggingFaceEmbeddings(),
)
if loaded_patent == file_name or already_indexed(vectordb, file_name):
st.write("β
Already indexed.")
else:
vectordb.delete_collection()
docs = load_docs(file_name)
st.write("π Number of Documents: ", len(docs))
vectordb = Chroma.from_documents(
docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
)
vectordb.persist()
st.session_state["LOADED_PATENT"] = file_name
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
input_key="question",
output_key="answer",
)
return ConversationalRetrievalChain.from_llm(
OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
vectordb.as_retriever(search_kwargs={"k": 3}),
return_source_documents=False,
memory=memory,
)
def extract_patent_number(url):
pattern = r"/patent/([A-Z]{2}\d+)"
match = re.search(pattern, url)
return match.group(1) if match else None
def download_pdf(patent_number):
try:
patent_downloader = PatentDownloader(verbose=True)
output_path = patent_downloader.download(patents=patent_number)
return output_path[0] # Return the first file path
except Exception as e:
st.error(f"Failed to download patent PDF: {e}")
st.stop()
if __name__ == "__main__":
st.set_page_config(
page_title="Patent Chat: Google Patents Chat Demo",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded",
)
st.header("π Patent Chat: Google Patents Chat Demo")
# Allow user to input the Google patent link
patent_link = st.text_input("Enter Google Patent Link:", key="PATENT_LINK")
if not patent_link:
st.warning("Please enter a Google patent link to proceed.")
st.stop()
patent_number = extract_patent_number(patent_link)
if not patent_number:
st.error("Invalid patent link format. Please provide a valid Google patent link.")
st.stop()
st.write(f"Patent number: **{patent_number}**")
# Download the PDF file
pdf_path = f"{patent_number}.pdf"
if os.path.isfile(pdf_path):
st.write("β
File already downloaded.")
else:
st.write("π₯ Downloading patent file...")
pdf_path = download_pdf(patent_number)
st.write(f"β
File downloaded: {pdf_path}")
# Load the conversational chain
st.write("π Loading document into the system...")
chain = load_chain(pdf_path)
st.success("π Document successfully loaded! You can now start asking questions.")
# Initialize the chat
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}
]
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
if user_input := st.chat_input("What is your question?"):
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
# Generate assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
with st.spinner("Generating response..."):
try:
assistant_response = chain({"question": user_input})
for chunk in assistant_response["answer"].split():
full_response += chunk + " "
time.sleep(0.05) # Simulate typing effect
message_placeholder.markdown(full_response + "β")
except Exception as e:
full_response = f"An error occurred: {e}"
finally:
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response}) |