Dorglorich commited on
Commit
a684a49
·
verified ·
1 Parent(s): 977148a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +103 -0
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import re
3
+ import pandas as pd
4
+ from sklearn.feature_extraction.text import TfidfVectorizer
5
+ from sklearn.naive_bayes import MultinomialNB
6
+ import numpy as np
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.ensemble import RandomForestClassifier
9
+ from sklearn.metrics import accuracy_score, classification_report
10
+ import tensorflow as tf
11
+ from sklearn.feature_extraction.text import TfidfVectorizer
12
+ from sklearn.naive_bayes import MultinomialNB
13
+ from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
14
+ import nltk
15
+ from nltk.corpus import stopwords
16
+ from nltk.stem import PorterStemmer
17
+ from gensim.models import Word2Vec
18
+ import matplotlib.pyplot as plt
19
+ import seaborn as sns
20
+
21
+
22
+ # for using TensorFlow for deep learning
23
+ from tensorflow.keras.models import Sequential
24
+ from tensorflow.keras.layers import Dense
25
+ from tensorflow.keras.optimizers import Adam
26
+ from tensorflow.keras.losses import categorical_crossentropy
27
+
28
+ # for using PyTorch for deep learning
29
+ import torch
30
+ import torch.nn as nn
31
+ import torch.optim as optim
32
+ import torch.nn.functional as F
33
+
34
+
35
+ # Load your symptom-disease data
36
+ data = pd.read_csv("Symptom2Disease.csv")
37
+
38
+ # Initialize the TF-IDF vectorizer
39
+ tfidf_vectorizer = TfidfVectorizer()
40
+
41
+ # Apply TF-IDF vectorization to the preprocessed text data
42
+ X = tfidf_vectorizer.fit_transform(data['text'])
43
+
44
+ # Split the dataset into a training set and a testing set
45
+ X_train, X_test, y_train, y_test = train_test_split(X, data['label'], test_size=0.2, random_state=42)
46
+
47
+ # Initialize the Multinomial Naive Bayes model
48
+ model = MultinomialNB()
49
+
50
+ # Train the model on the training data
51
+ model.fit(X_train, y_train)
52
+
53
+ # Set Streamlit app title with emojis
54
+ st.title("Healthcare Symptom-to-Disease Recommender 🏥👨‍⚕️")
55
+
56
+ # Define a sidebar
57
+ st.sidebar.title("Tool Definition")
58
+ st.sidebar.markdown("This tool helps you identify possible diseases based on the symptoms you provide. It is not a substitute for professional medical advice. Always consult a healthcare professional for accurate diagnosis and treatment.")
59
+
60
+ # Initialize chat history
61
+ if "messages" not in st.session_state:
62
+ st.session_state.messages = []
63
+
64
+ # Function to preprocess user input
65
+ def preprocess_input(user_input):
66
+ user_input = user_input.lower() # Convert to lowercase
67
+ user_input = re.sub(r"[^a-zA-Z\s]", "", user_input) # Remove special characters and numbers
68
+ user_input = " ".join(user_input.split()) # Remove extra spaces
69
+ return user_input
70
+
71
+ # Function to predict diseases based on user input
72
+ def predict_diseases(user_clean_text):
73
+ user_input_vector = tfidf_vectorizer.transform([user_clean_text]) # Vectorize the cleaned user input
74
+ predictions = model.predict(user_input_vector) # Make predictions using the trained model
75
+ return predictions
76
+
77
+ # Add user input section
78
+ user_input = st.text_area("Enter your symptoms (how you feel):", key="user_input")
79
+
80
+ # Add button to predict disease
81
+ if st.button("Predict Disease"):
82
+ # Display loading message
83
+ with st.spinner("Diagnosing patient..."):
84
+ # Check if user input is not empty
85
+ if user_input:
86
+ cleaned_input = preprocess_input(user_input)
87
+ predicted_diseases = predict_diseases(cleaned_input)
88
+
89
+ # Display predicted diseases
90
+ st.session_state.messages.append({"role": "user", "content": user_input})
91
+ st.session_state.messages.append({"role": "assistant", "content": f"Based on your symptoms, you might have {', '.join(predicted_diseases)}."})
92
+
93
+ st.write("Based on your symptoms, you might have:")
94
+ for disease in predicted_diseases:
95
+ st.write(f"- {disease}")
96
+ else:
97
+ st.warning("Please enter your symptoms before predicting.")
98
+
99
+ # Display a warning message
100
+ st.warning("Please note that this tool is for informational purposes only. Always consult a healthcare professional for accurate medical advice.")
101
+
102
+ # Add attribution
103
+ st.markdown("Created with ❤️ by Richard Dorglo")