|
import gradio as gr |
|
import spaces |
|
from gradio_litmodel3d import LitModel3D |
|
|
|
import os |
|
import shutil |
|
os.environ['SPCONV_ALGO'] = 'native' |
|
from typing import * |
|
import torch |
|
import numpy as np |
|
import imageio |
|
from PIL import Image |
|
from trellis.pipelines import TrellisImageTo3DPipeline |
|
from trellis.utils import render_utils |
|
import trimesh |
|
import tempfile |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') |
|
os.makedirs(TMP_DIR, exist_ok=True) |
|
|
|
def preprocess_mesh(mesh_prompt): |
|
print("Processing mesh") |
|
trimesh_mesh = trimesh.load_mesh(mesh_prompt) |
|
trimesh_mesh.export(mesh_prompt+'.glb') |
|
return mesh_prompt+'.glb' |
|
|
|
def preprocess_image(image): |
|
if image is None: |
|
return None |
|
image = pipeline.preprocess_image(image, resolution=1024) |
|
return image |
|
|
|
@spaces.GPU |
|
def generate_3d(image, seed=-1, |
|
ss_guidance_strength=3, ss_sampling_steps=50, |
|
slat_guidance_strength=3, slat_sampling_steps=6,): |
|
if image is None: |
|
return None, None, None |
|
|
|
if seed == -1: |
|
seed = np.random.randint(0, MAX_SEED) |
|
|
|
image = pipeline.preprocess_image(image, resolution=1024) |
|
normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object') |
|
|
|
outputs = pipeline.run( |
|
normal_image, |
|
seed=seed, |
|
formats=["mesh",], |
|
preprocess_image=False, |
|
sparse_structure_sampler_params={ |
|
"steps": ss_sampling_steps, |
|
"cfg_strength": ss_guidance_strength, |
|
}, |
|
slat_sampler_params={ |
|
"steps": slat_sampling_steps, |
|
"cfg_strength": slat_guidance_strength, |
|
}, |
|
) |
|
generated_mesh = outputs['mesh'][0] |
|
|
|
|
|
import datetime |
|
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S") |
|
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True) |
|
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb" |
|
|
|
render_results = render_utils.render_video(generated_mesh, resolution=1024, ssaa=1, num_frames=8, pitch=0.25, inverse_direction=True) |
|
def combine_diagonal(color_np, normal_np): |
|
|
|
h, w, c = color_np.shape |
|
|
|
mask = np.fromfunction(lambda y, x: x > y, (h, w)) |
|
mask = mask.astype(bool) |
|
mask = np.stack([mask] * c, axis=-1) |
|
|
|
combined_np = np.where(mask, color_np, normal_np) |
|
return Image.fromarray(combined_np) |
|
|
|
preview_images = [combine_diagonal(c, n) for c, n in zip(render_results['color'], render_results['normal'])] |
|
|
|
|
|
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True) |
|
|
|
trimesh_mesh.export(mesh_path) |
|
|
|
return preview_images, normal_image, mesh_path, mesh_path |
|
|
|
def convert_mesh(mesh_path, export_format): |
|
"""Download the mesh in the selected format.""" |
|
if not mesh_path: |
|
return None |
|
|
|
|
|
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False) |
|
temp_file_path = temp_file.name |
|
|
|
new_mesh_path = mesh_path.replace(".glb", f".{export_format}") |
|
mesh = trimesh.load_mesh(mesh_path) |
|
mesh.export(temp_file_path) |
|
|
|
return temp_file_path |
|
|
|
|
|
with gr.Blocks(css="footer {visibility: hidden}") as demo: |
|
gr.Markdown( |
|
""" |
|
<h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1> |
|
<p style='text-align: center;'> |
|
<strong>V0.1, Introduced By |
|
<a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> from CUHKSZ and |
|
<a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> from ByteDance</strong> |
|
</p> |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown(""" |
|
<p align="center"> |
|
<a title="Website" href="https://stable-x.github.io/Hi3DGen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> |
|
<img src="https://www.obukhov.ai/img/badges/badge-website.svg"> |
|
</a> |
|
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> |
|
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg"> |
|
</a> |
|
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> |
|
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> |
|
</a> |
|
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> |
|
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social"> |
|
</a> |
|
</p> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
with gr.Tabs(): |
|
|
|
with gr.Tab("Single Image"): |
|
with gr.Row(): |
|
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil") |
|
normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil") |
|
|
|
with gr.Tab("Multiple Images"): |
|
gr.Markdown("<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1) |
|
gr.Markdown("#### Stage 1: Sparse Structure Generation") |
|
with gr.Row(): |
|
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1) |
|
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1) |
|
gr.Markdown("#### Stage 2: Structured Latent Generation") |
|
with gr.Row(): |
|
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) |
|
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1) |
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary") |
|
|
|
|
|
with gr.Column(scale=1): |
|
with gr.Tabs(): |
|
with gr.Tab("Preview"): |
|
output_gallery = gr.Gallery(label="Examples", columns=4, rows=2, object_fit="contain", height="auto",show_label=False) |
|
with gr.Tab("3D Model"): |
|
with gr.Column(): |
|
model_output = gr.Model3D(label="3D Model Preview (Each model is approximately 40MB, may take around 1 minute to load)") |
|
with gr.Column(): |
|
export_format = gr.Dropdown( |
|
choices=["obj", "glb", "ply", "stl"], |
|
value="glb", |
|
label="File Format" |
|
) |
|
download_btn = gr.DownloadButton(label="Export Mesh", interactive=False) |
|
|
|
image_prompt.upload( |
|
preprocess_image, |
|
inputs=[image_prompt], |
|
outputs=[image_prompt] |
|
) |
|
|
|
gen_shape_btn.click( |
|
generate_3d, |
|
inputs=[ |
|
image_prompt, seed, |
|
ss_guidance_strength, ss_sampling_steps, |
|
slat_guidance_strength, slat_sampling_steps |
|
], |
|
outputs=[output_gallery, normal_output, model_output, download_btn] |
|
).then( |
|
lambda: gr.Button(interactive=True), |
|
outputs=[download_btn], |
|
) |
|
|
|
|
|
def update_download_button(mesh_path, export_format): |
|
if not mesh_path: |
|
return gr.File.update(value=None, interactive=False) |
|
|
|
download_path = convert_mesh(mesh_path, export_format) |
|
return download_path |
|
|
|
export_format.change( |
|
update_download_button, |
|
inputs=[model_output, export_format], |
|
outputs=[download_btn] |
|
).then( |
|
lambda: gr.Button(interactive=True), |
|
outputs=[download_btn], |
|
) |
|
|
|
examples = gr.Examples( |
|
examples=[ |
|
f'assets/example_image/{image}' |
|
for image in os.listdir("assets/example_image") |
|
], |
|
inputs=image_prompt, |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
**Acknowledgments**: Hi3DGen is built on the shoulders of giants. We would like to express our gratitude to the open-source research community and the developers of these pioneering projects: |
|
- **3D Modeling:** Our 3D Model is finetuned from the SOTA open-source 3D foundation model [Trellis](https://github.com/microsoft/TRELLIS) and we draw inspiration from the teams behind [Rodin](https://hyperhuman.deemos.com/rodin), [Tripo](https://www.tripo3d.ai/app/home), and [Dora](https://github.com/Seed3D/Dora). |
|
- **Normal Estimation:** Our Normal Estimation Model builds on the leading normal estimation research such as [StableNormal](https://github.com/hugoycj/StableNormal) and [GenPercept](https://github.com/aim-uofa/GenPercept). |
|
|
|
**Your contributions and collaboration push the boundaries of 3D modeling!** |
|
""" |
|
) |
|
|
|
if __name__ == "__main__": |
|
|
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("Stable-X/trellis-normal-v0-1") |
|
pipeline.cuda() |
|
|
|
|
|
normal_predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal_turbo", trust_repo=True, yoso_version='yoso-normal-v1-8-1') |
|
|
|
|
|
demo.launch() |
|
|