Spaces:
Runtime error
Runtime error
File size: 11,561 Bytes
1ca7c3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from sdc_classifier import SDCClassifier
from dotenv import load_dotenv
import torch
import json
import os
from typing import Dict, Tuple, Optional, Any, List
from dataclasses import dataclass, field
# Load environment variables
load_dotenv()
@dataclass
class Config:
DEFAULT_CLASSES_FILE: str = "classes.json"
DEFAULT_SIGNATURES_FILE: str = "signatures.npz"
CACHE_FILE: str = "embeddings_cache.db"
MODEL_INFO_FILE: str = "model_info.json"
DEFAULT_OPENAI_MODELS: List[str] = field(default_factory=lambda: ["text-embedding-3-large", "text-embedding-3-small"])
DEFAULT_LOCAL_MODEL: str = "cambridgeltl/SapBERT-from-PubMedBERT-fulltext"
config = Config()
class ClassifierApp:
def __init__(self):
self.classifier = None
self.initial_info = {
"status": "initializing",
"model_info": {},
"classes_info": {},
"errors": []
}
def initialize_environment(self) -> Tuple[Dict, Optional[SDCClassifier]]:
"""Ініціалізація середовища при першому запуску"""
if not os.path.exists(config.DEFAULT_CLASSES_FILE):
self.initial_info["errors"].append(
f"ПОМИЛКА: Файл {config.DEFAULT_CLASSES_FILE} не знайдено!"
)
self.initial_info["status"] = "error"
return self.initial_info, None
try:
self.classifier = SDCClassifier()
classes = self.classifier.load_classes(config.DEFAULT_CLASSES_FILE)
self.initial_info["classes_info"] = {
"total_classes": len(classes),
"classes_list": list(classes.keys()),
"hints_per_class": {cls: len(hints) for cls, hints in classes.items()}
}
if os.path.exists(config.DEFAULT_SIGNATURES_FILE):
self.classifier.load_signatures(config.DEFAULT_SIGNATURES_FILE)
self.initial_info["status"] = "success"
else:
self.initial_info["status"] = "creating_signatures"
result = self.classifier.initialize_signatures(
force_rebuild=True,
signatures_file=config.DEFAULT_SIGNATURES_FILE
)
if isinstance(result, str) and "error" in result.lower():
self.initial_info["errors"].append(result)
self.initial_info["status"] = "error"
return self.initial_info, None
try:
self.classifier.save_model_info(config.MODEL_INFO_FILE)
with open(config.MODEL_INFO_FILE, "r") as f:
self.initial_info["model_info"] = json.load(f)
self.initial_info["status"] = "success"
return self.initial_info, self.classifier
except (FileNotFoundError, json.JSONDecodeError) as e:
self.initial_info["errors"].append(f"Помилка при читанні model_info: {str(e)}")
self.initial_info["status"] = "error"
return self.initial_info, None
except Exception as e:
self.initial_info["errors"].append(f"ПОМИЛКА при ініціалізації: {str(e)}")
self.initial_info["status"] = "error"
return self.initial_info, None
def create_classifier(
self,
model_type: str,
openai_model: Optional[str] = None,
local_model: Optional[str] = None,
device: Optional[str] = None
) -> SDCClassifier:
"""Створення класифікатора з відповідними параметрами"""
if model_type == "OpenAI":
return SDCClassifier(openai_model=openai_model)
else:
return SDCClassifier(local_model=local_model, device=device)
def update_model_inputs(
self,
model_type: str,
openai_model: str,
local_model: str,
device: str
) -> Dict[str, Any]:
"""Оновлення моделі та інтерфейсу при зміні типу моделі"""
try:
self.classifier = self.create_classifier(
model_type=model_type,
openai_model=openai_model if model_type == "OpenAI" else None,
local_model=local_model if model_type == "Local" else None,
device=device if model_type == "Local" else None
)
self.classifier.restore_base_state()
result = self.classifier.initialize_signatures()
self.classifier.save_model_info(config.MODEL_INFO_FILE)
with open(config.MODEL_INFO_FILE, "r") as f:
model_info = json.load(f)
new_system_info = {
"status": "success",
"model_info": model_info,
"classes_info": {
"total_classes": len(self.classifier.classes_json),
"classes_list": list(self.classifier.classes_json.keys()),
"hints_per_class": {cls: len(hints) for cls, hints in self.classifier.classes_json.items()}
},
"errors": []
}
return {
"model_choice": gr.update(visible=model_type == "OpenAI"),
"local_model_path": gr.update(visible=model_type == "Local"),
"device_choice": gr.update(visible=model_type == "Local"),
"system_info": new_system_info,
"system_md": self.update_system_markdown(new_system_info),
"build_out": f"Модель змінено на {model_type}",
"cache_stats": self.classifier.get_cache_stats()
}
except Exception as e:
error_info = {
"status": "error",
"errors": [str(e)],
"model_info": {},
"classes_info": {}
}
return {
"model_choice": gr.update(visible=model_type == "OpenAI"),
"local_model_path": gr.update(visible=model_type == "Local"),
"device_choice": gr.update(visible=model_type == "Local"),
"system_info": error_info,
"system_md": self.update_system_markdown(error_info),
"build_out": f"Помилка: {str(e)}",
"cache_stats": {}
}
def update_classifier_settings(
self,
json_file: Optional[str],
model_type: str,
openai_model: str,
local_model: str,
device: str,
force_rebuild: bool
) -> Tuple[str, Dict, Dict, str]:
"""Оновлення налаштувань класифікатора"""
try:
self.classifier = self.create_classifier(
model_type=model_type,
openai_model=openai_model if model_type == "OpenAI" else None,
local_model=local_model if model_type == "Local" else None,
device=device if model_type == "Local" else None
)
if json_file is not None:
with open(json_file.name, 'r', encoding='utf-8') as f:
new_classes = json.load(f)
self.classifier.load_classes(new_classes)
else:
self.classifier.restore_base_state()
result = self.classifier.initialize_signatures(
force_rebuild=force_rebuild,
signatures_file=config.DEFAULT_SIGNATURES_FILE if not force_rebuild else None
)
self.classifier.save_model_info(config.MODEL_INFO_FILE)
with open(config.MODEL_INFO_FILE, "r") as f:
model_info = json.load(f)
new_system_info = {
"status": "success",
"model_info": model_info,
"classes_info": {
"total_classes": len(self.classifier.classes_json),
"classes_list": list(self.classifier.classes_json.keys()),
"hints_per_class": {
cls: len(hints)
for cls, hints in self.classifier.classes_json.items()
}
},
"errors": []
}
return (
result,
self.classifier.get_cache_stats(),
new_system_info,
self.update_system_markdown(new_system_info)
)
except Exception as e:
error_info = {
"status": "error",
"errors": [str(e)],
"model_info": {},
"classes_info": {}
}
return (
f"Помилка: {str(e)}",
self.classifier.get_cache_stats(),
error_info,
self.update_system_markdown(error_info)
)
def process_single_text(self, text: str, threshold: float) -> Dict:
"""Обробка одного тексту"""
try:
if self.classifier is None:
raise ValueError("Класифікатор не ініціалізовано")
return self.classifier.process_single_text(text, threshold)
except Exception as e:
return {"error": str(e)}
def load_data(self, csv_path: str, emb_path: str) -> str:
"""Завантаження даних для пакетної обробки"""
try:
if self.classifier is None:
raise ValueError("Класифікатор не ініціалізовано")
return self.classifier.load_data(csv_path, emb_path)
except Exception as e:
return f"Помилка: {str(e)}"
def classify_batch(self, filter_str: str, threshold: float):
"""Пакетна класифікація"""
try:
if self.classifier is None:
raise ValueError("Класифікатор не ініціалізовано")
return self.classifier.classify_rows(filter_str, threshold)
except Exception as e:
return None
def save_results(self) -> str:
"""Збереження результатів"""
try:
if self.classifier is None:
raise ValueError("Класифікатор не ініціалізовано")
return self.classifier.save_results()
except Exception as e:
return f"Помилка: {str(e)}"
@staticmethod
def update_system_markdown(info: Dict) -> str:
"""Оновлення Markdown з системною інформацією"""
if info["status"] == "success":
return f"""
### Поточна конфігурація:
- Модель: {info['model_info'].get('using_local', 'OpenAI')}
- Кількість класів: {info['classes_info']['total_classes']}
- Класи: {', '.join(info['classes_info']['classes_list'])}
"""
else:
return f"""
### Помилки ініціалізації:
{chr(10).join('- ' + err for err in info['errors'])}
""" |