Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
@@ -30,6 +31,7 @@ def find_local_min_runs(profile, min_run=1, max_run=2):
|
|
30 |
|
31 |
def bio_mutate(seq):
|
32 |
r = random.random()
|
|
|
33 |
if r < 0.70:
|
34 |
idx = random.randint(0, len(seq)-1)
|
35 |
orig = seq[idx]
|
@@ -41,26 +43,31 @@ def bio_mutate(seq):
|
|
41 |
else:
|
42 |
newbase = random.choice([b for b in bases if b != orig])
|
43 |
seq = seq[:idx] + newbase + seq[idx+1:]
|
|
|
44 |
elif r < 0.80:
|
45 |
idx = random.randint(0, len(seq)-1)
|
46 |
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
|
47 |
seq = seq[:idx] + ins + seq[idx:]
|
48 |
if len(seq) > seqlen:
|
49 |
seq = seq[:seqlen]
|
|
|
50 |
elif r < 0.90:
|
51 |
if len(seq) > 4:
|
52 |
idx = random.randint(0, len(seq)-2)
|
53 |
dell = random.randint(1, min(3, len(seq)-idx))
|
|
|
54 |
seq = seq[:idx] + seq[idx+dell:]
|
|
|
55 |
else:
|
56 |
if len(seq) > 10:
|
57 |
start = random.randint(0, len(seq)-6)
|
58 |
end = start + random.randint(3,6)
|
59 |
-
subseq = seq[start:end]
|
60 |
-
seq = seq[:start] + subseq + seq[end:]
|
|
|
61 |
while len(seq) < seqlen:
|
62 |
seq += random.choice(bases)
|
63 |
-
return seq[:seqlen]
|
64 |
|
65 |
def compute_autocorr(profile):
|
66 |
profile = profile - np.mean(profile)
|
@@ -80,6 +87,9 @@ start = st.button("▶️ Старт эфира")
|
|
80 |
stop = st.checkbox("⏹️ Остановить")
|
81 |
|
82 |
plot_placeholder = st.empty()
|
|
|
|
|
|
|
83 |
|
84 |
if start:
|
85 |
seq = ''.join(random.choices(bases, k=seqlen))
|
@@ -93,7 +103,9 @@ if start:
|
|
93 |
break
|
94 |
|
95 |
if step != 0:
|
96 |
-
seq = bio_mutate(seq)
|
|
|
|
|
97 |
|
98 |
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
99 |
runs = find_local_min_runs(torsion_profile, min_run, max_run)
|
@@ -123,5 +135,9 @@ if start:
|
|
123 |
plot_placeholder.pyplot(fig)
|
124 |
plt.close(fig)
|
125 |
|
|
|
|
|
|
|
|
|
126 |
step += 1
|
127 |
time.sleep(0.3)
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
|
|
31 |
|
32 |
def bio_mutate(seq):
|
33 |
r = random.random()
|
34 |
+
mutation_type = "None"
|
35 |
if r < 0.70:
|
36 |
idx = random.randint(0, len(seq)-1)
|
37 |
orig = seq[idx]
|
|
|
43 |
else:
|
44 |
newbase = random.choice([b for b in bases if b != orig])
|
45 |
seq = seq[:idx] + newbase + seq[idx+1:]
|
46 |
+
mutation_type = f"Substitution at {idx}: {orig} → {newbase}"
|
47 |
elif r < 0.80:
|
48 |
idx = random.randint(0, len(seq)-1)
|
49 |
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
|
50 |
seq = seq[:idx] + ins + seq[idx:]
|
51 |
if len(seq) > seqlen:
|
52 |
seq = seq[:seqlen]
|
53 |
+
mutation_type = f"Insertion at {idx}: {ins}"
|
54 |
elif r < 0.90:
|
55 |
if len(seq) > 4:
|
56 |
idx = random.randint(0, len(seq)-2)
|
57 |
dell = random.randint(1, min(3, len(seq)-idx))
|
58 |
+
deleted = seq[idx:idx+dell]
|
59 |
seq = seq[:idx] + seq[idx+dell:]
|
60 |
+
mutation_type = f"Deletion at {idx}: {deleted}"
|
61 |
else:
|
62 |
if len(seq) > 10:
|
63 |
start = random.randint(0, len(seq)-6)
|
64 |
end = start + random.randint(3,6)
|
65 |
+
subseq = seq[start:end]
|
66 |
+
seq = seq[:start] + subseq[::-1] + seq[end:]
|
67 |
+
mutation_type = f"Inversion from {start} to {end}: {subseq} → {subseq[::-1]}"
|
68 |
while len(seq) < seqlen:
|
69 |
seq += random.choice(bases)
|
70 |
+
return seq[:seqlen], mutation_type
|
71 |
|
72 |
def compute_autocorr(profile):
|
73 |
profile = profile - np.mean(profile)
|
|
|
87 |
stop = st.checkbox("⏹️ Остановить")
|
88 |
|
89 |
plot_placeholder = st.empty()
|
90 |
+
status_placeholder = st.sidebar.empty()
|
91 |
+
entropy_placeholder = st.sidebar.empty()
|
92 |
+
mutation_type_placeholder = st.sidebar.empty()
|
93 |
|
94 |
if start:
|
95 |
seq = ''.join(random.choices(bases, k=seqlen))
|
|
|
103 |
break
|
104 |
|
105 |
if step != 0:
|
106 |
+
seq, mut_type = bio_mutate(seq)
|
107 |
+
else:
|
108 |
+
mut_type = "Initial sequence"
|
109 |
|
110 |
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
111 |
runs = find_local_min_runs(torsion_profile, min_run, max_run)
|
|
|
135 |
plot_placeholder.pyplot(fig)
|
136 |
plt.close(fig)
|
137 |
|
138 |
+
status_placeholder.markdown(f"### ℹ️ Шаг: {step}")
|
139 |
+
entropy_placeholder.metric("Энтропия", f"{ent:.2f}")
|
140 |
+
mutation_type_placeholder.markdown(f"**Мутация:** {mut_type}")
|
141 |
+
|
142 |
step += 1
|
143 |
time.sleep(0.3)
|