Update app.py
Browse files
app.py
CHANGED
@@ -4,35 +4,17 @@ import matplotlib.pyplot as plt
|
|
4 |
import random
|
5 |
from scipy.stats import entropy as scipy_entropy
|
6 |
import time
|
7 |
-
import imageio
|
8 |
-
from datetime import datetime
|
9 |
-
|
10 |
-
st.set_page_config(layout="wide")
|
11 |
|
12 |
# --- ПАРАМЕТРЫ ---
|
13 |
seqlen = 60
|
14 |
min_run, max_run = 1, 2
|
15 |
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
|
16 |
bases = ['A', 'C', 'G', 'T']
|
|
|
|
|
17 |
|
18 |
# --- ФУНКЦИИ ---
|
19 |
|
20 |
-
# Функция для нахождения локальных минимумов (например, биомашин)
|
21 |
-
def find_local_min_runs(profile, min_run=1, max_run=2):
|
22 |
-
result = []
|
23 |
-
N = len(profile)
|
24 |
-
i = 0
|
25 |
-
while i < N:
|
26 |
-
run_val = profile[i]
|
27 |
-
run_length = 1
|
28 |
-
while i + run_length < N and profile[i + run_length] == run_val:
|
29 |
-
run_length += 1
|
30 |
-
if min_run <= run_length <= max_run:
|
31 |
-
result.append((i, i + run_length - 1, run_val))
|
32 |
-
i += run_length
|
33 |
-
return result
|
34 |
-
|
35 |
-
# Функция для мутации последовательности
|
36 |
def bio_mutate(seq):
|
37 |
r = random.random()
|
38 |
if r < 0.70:
|
@@ -67,7 +49,6 @@ def bio_mutate(seq):
|
|
67 |
seq += random.choice(bases)
|
68 |
return seq[:seqlen]
|
69 |
|
70 |
-
# Функция для вычисления автокорреляции
|
71 |
def compute_autocorr(profile):
|
72 |
profile = profile - np.mean(profile)
|
73 |
result = np.correlate(profile, profile, mode='full')
|
@@ -75,27 +56,29 @@ def compute_autocorr(profile):
|
|
75 |
norm = np.max(result) if np.max(result) != 0 else 1
|
76 |
return result[:10]/norm
|
77 |
|
78 |
-
# Функция для вычисления энтропии
|
79 |
def compute_entropy(profile):
|
80 |
vals, counts = np.unique(profile, return_counts=True)
|
81 |
p = counts / counts.sum()
|
82 |
return scipy_entropy(p, base=2)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
97 |
|
98 |
-
|
|
|
99 |
|
100 |
# --- UI ---
|
101 |
st.title("🔴 Живой эфир мутаций ДНК")
|
@@ -105,10 +88,10 @@ stop = st.checkbox("⏹️ Остановить")
|
|
105 |
plot_placeholder = st.empty()
|
106 |
|
107 |
if start:
|
108 |
-
|
|
|
109 |
stat_bist_counts = []
|
110 |
stat_entropy = []
|
111 |
-
stat_fractal = []
|
112 |
|
113 |
step = 0
|
114 |
while True:
|
@@ -116,28 +99,28 @@ if start:
|
|
116 |
st.warning("⏹️ Эфир остановлен пользователем.")
|
117 |
break
|
118 |
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
ent = compute_entropy(torsion_profile)
|
126 |
stat_entropy.append(ent)
|
127 |
-
|
128 |
-
acorr = compute_autocorr(torsion_profile)
|
129 |
-
|
130 |
-
fractal_dimension = correlation_dimension(torsion_profile)
|
131 |
-
stat_fractal.append(fractal_dimension)
|
132 |
|
133 |
-
fig, axs = plt.subplots(
|
134 |
plt.subplots_adjust(hspace=0.45)
|
135 |
|
136 |
-
axs[0].plot(
|
137 |
-
for start_, end_, val in runs:
|
138 |
-
axs[0].axvspan(start_, end_, color="red", alpha=0.3)
|
139 |
axs[0].set_ylim(-200, 200)
|
140 |
-
axs[0].set_title(f"Шаг {step}: {
|
141 |
axs[0].set_ylabel("Торсионный угол")
|
142 |
|
143 |
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
|
@@ -148,10 +131,6 @@ if start:
|
|
148 |
axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
|
149 |
axs[2].set_xlabel("Лаг")
|
150 |
|
151 |
-
axs[3].plot(stat_fractal, '-o', color='green', markersize=4)
|
152 |
-
axs[3].set_title("Фрактальная размерность")
|
153 |
-
axs[3].set_ylabel("Размерность")
|
154 |
-
|
155 |
plot_placeholder.pyplot(fig)
|
156 |
plt.close(fig)
|
157 |
|
|
|
4 |
import random
|
5 |
from scipy.stats import entropy as scipy_entropy
|
6 |
import time
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# --- ПАРАМЕТРЫ ---
|
9 |
seqlen = 60
|
10 |
min_run, max_run = 1, 2
|
11 |
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
|
12 |
bases = ['A', 'C', 'G', 'T']
|
13 |
+
population_size = 10 # размер популяции "организмов"
|
14 |
+
survival_rate = 0.5 # процент выживших для следующего поколения
|
15 |
|
16 |
# --- ФУНКЦИИ ---
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def bio_mutate(seq):
|
19 |
r = random.random()
|
20 |
if r < 0.70:
|
|
|
49 |
seq += random.choice(bases)
|
50 |
return seq[:seqlen]
|
51 |
|
|
|
52 |
def compute_autocorr(profile):
|
53 |
profile = profile - np.mean(profile)
|
54 |
result = np.correlate(profile, profile, mode='full')
|
|
|
56 |
norm = np.max(result) if np.max(result) != 0 else 1
|
57 |
return result[:10]/norm
|
58 |
|
|
|
59 |
def compute_entropy(profile):
|
60 |
vals, counts = np.unique(profile, return_counts=True)
|
61 |
p = counts / counts.sum()
|
62 |
return scipy_entropy(p, base=2)
|
63 |
|
64 |
+
def genetic_algorithm(population):
|
65 |
+
"""Эволюционный алгоритм для отбора и мутации."""
|
66 |
+
# Отбор лучших организмов
|
67 |
+
population.sort(key=lambda x: x[1]) # сортируем по фитнесу (энтропия)
|
68 |
+
survivors = population[:int(population_size * survival_rate)]
|
69 |
+
|
70 |
+
# Кроссовер: создаем новых организмов на основе выживших
|
71 |
+
offspring = []
|
72 |
+
for i in range(len(survivors) // 2):
|
73 |
+
parent1, parent2 = survivors[i], survivors[-i-1]
|
74 |
+
crossover_point = random.randint(0, seqlen)
|
75 |
+
child1 = parent1[0][:crossover_point] + parent2[0][crossover_point:]
|
76 |
+
child2 = parent2[0][:crossover_point] + parent1[0][crossover_point:]
|
77 |
+
offspring.append((bio_mutate(child1), 0))
|
78 |
+
offspring.append((bio_mutate(child2), 0))
|
79 |
|
80 |
+
# Возвращаем новое поколение
|
81 |
+
return survivors + offspring
|
82 |
|
83 |
# --- UI ---
|
84 |
st.title("🔴 Живой эфир мутаций ДНК")
|
|
|
88 |
plot_placeholder = st.empty()
|
89 |
|
90 |
if start:
|
91 |
+
# Начальная популяция
|
92 |
+
population = [(random.choices(bases, k=seqlen), 0) for _ in range(population_size)]
|
93 |
stat_bist_counts = []
|
94 |
stat_entropy = []
|
|
|
95 |
|
96 |
step = 0
|
97 |
while True:
|
|
|
99 |
st.warning("⏹️ Эфир остановлен пользователем.")
|
100 |
break
|
101 |
|
102 |
+
# Мутация и оценка каждого организма в популяции
|
103 |
+
for i in range(population_size):
|
104 |
+
seq, _ = population[i]
|
105 |
+
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in seq])
|
106 |
+
ent = compute_entropy(torsion_profile)
|
107 |
+
population[i] = (seq, ent)
|
108 |
+
|
109 |
+
# Применяем эволюционный алгоритм
|
110 |
+
population = genetic_algorithm(population)
|
111 |
|
112 |
+
# Статистика для отображения
|
113 |
+
stat_bist_counts.append(len(population))
|
114 |
+
ent = np.mean([ind[1] for ind in population]) # средняя энтропия
|
|
|
115 |
stat_entropy.append(ent)
|
116 |
+
acorr = compute_autocorr(np.array([ANGLE_MAP.get(nt, 0.0) for nt in population[0][0]]))
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
|
119 |
plt.subplots_adjust(hspace=0.45)
|
120 |
|
121 |
+
axs[0].plot([ANGLE_MAP.get(nt, 0.0) for nt in population[0][0]], color='royalblue')
|
|
|
|
|
122 |
axs[0].set_ylim(-200, 200)
|
123 |
+
axs[0].set_title(f"Шаг {step}: {population[0][0]}")
|
124 |
axs[0].set_ylabel("Торсионный угол")
|
125 |
|
126 |
axs[1].plot(stat_bist_counts, '-o', color='crimson', markersize=4)
|
|
|
131 |
axs[2].set_title(f"Автокорреляция / Энтропия: {ent:.2f}")
|
132 |
axs[2].set_xlabel("Лаг")
|
133 |
|
|
|
|
|
|
|
|
|
134 |
plot_placeholder.pyplot(fig)
|
135 |
plt.close(fig)
|
136 |
|