Hoaxx / app.py
Dmtlant's picture
Update app.py
aaacbbe verified
raw
history blame
5.36 kB
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import random
import time
from scipy.stats import entropy as scipy_entropy
# --- НАСТРОЙКИ ---
seqlen = 60
steps = 10000
min_run, max_run = 1, 2
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0}
bases = ['A', 'C', 'G', 'T']
lags_shown = 6
st.set_page_config(layout="wide")
st.title("🌌 Визуализация торсионных биомашин")
# --- ИНТЕРФЕЙС ---
col1, col2, col3 = st.columns([1,1,2])
with col1:
if 'running' not in st.session_state:
st.session_state.running = False
if st.button("▶️ Старт / ⏸ Стоп"):
st.session_state.running = not st.session_state.running
with col2:
if st.button("🔄 Сброс"):
st.session_state.running = False
st.session_state.step = 0
st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
st.session_state.stat_bist_counts = []
st.session_state.stat_entropy = []
st.session_state.stat_autocorr = []
with col3:
speed = st.slider("⏱ Скорость обновления (мс)", 10, 1000, 200, step=10)
# --- ИНИЦИАЛИЗАЦИЯ ---
if 'seq' not in st.session_state:
st.session_state.seq = ''.join(random.choices(bases, k=seqlen))
if 'step' not in st.session_state:
st.session_state.step = 0
if 'stat_bist_counts' not in st.session_state:
st.session_state.stat_bist_counts = []
st.session_state.stat_entropy = []
st.session_state.stat_autocorr = []
# --- ФУНКЦИИ ---
def find_local_min_runs(profile, min_run=1, max_run=2):
result = []
N = len(profile)
i = 0
while i < N:
run_val = profile[i]
run_length = 1
while i + run_length < N and profile[i + run_length] == run_val:
run_length += 1
if min_run <= run_length <= max_run:
result.append((i, i + run_length - 1, run_val))
i += run_length
return result
def compute_autocorr(profile):
profile = profile - np.mean(profile)
result = np.correlate(profile, profile, mode='full')
result = result[result.size // 2:]
norm = np.max(result) if np.max(result) != 0 else 1
return result[:10] / norm
def compute_entropy(profile):
vals, counts = np.unique(profile, return_counts=True)
p = counts / counts.sum()
return scipy_entropy(p, base=2)
def bio_mutate(seq):
r = random.random()
if r < 0.70:
idx = random.randint(0, len(seq)-1)
orig = seq[idx]
prob = random.random()
if orig in 'AG':
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C'])
elif orig in 'CT':
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G'])
else:
newbase = random.choice([b for b in bases if b != orig])
seq = seq[:idx] + newbase + seq[idx+1:]
elif r < 0.80:
idx = random.randint(0, len(seq)-1)
ins = ''.join(random.choices(bases, k=random.randint(1, 3)))
seq = seq[:idx] + ins + seq[idx:]
if len(seq) > seqlen:
seq = seq[:seqlen]
elif r < 0.90:
if len(seq) > 4:
idx = random.randint(0, len(seq)-2)
dell = random.randint(1, min(3, len(seq)-idx))
seq = seq[:idx] + seq[idx+dell:]
else:
if len(seq) > 10:
start = random.randint(0, len(seq)-6)
end = start + random.randint(3,6)
subseq = seq[start:end]
subseq = subseq[::-1]
seq = seq[:start] + subseq + seq[end:]
while len(seq) < seqlen:
seq += random.choice(bases)
if len(seq) > seqlen:
seq = seq[:seqlen]
return seq
# --- ВИЗУАЛИЗАЦИЯ ---
plot_area = st.empty()
fig, axs = plt.subplots(3, 1, figsize=(10, 8))
plt.subplots_adjust(hspace=0.5)
# --- ЦИКЛ ВИЗУАЛИЗАЦИИ ---
while st.session_state.running:
st.session_state.seq = bio_mutate(st.session_state.seq)
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq])
runs = find_local_min_runs(torsion_profile, min_run, max_run)
ent = compute_entropy(torsion_profile)
acorr = compute_autocorr(torsion_profile)
st.session_state.stat_bist_counts = st.session_state.stat_bist_counts[-50:] + [len(runs)]
st.session_state.stat_entropy = st.session_state.stat_entropy[-50:] + [ent]
st.session_state.stat_autocorr = st.session_state.stat_autocorr[-50:] + [acorr]
axs[0].cla()
axs[1].cla()
axs[2].cla()
axs[0].plot(torsion_profile, color='royalblue')
for start, end, val in runs:
axs[0].axvspan(start, end, color="red", alpha=0.3)
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=4)
axs[0].set_ylim(-200, 200)
axs[0].set_title(f"Шаг {st.session_state.step}: {st.session_state.seq}\nМашин: {len(runs)}, Энтропия: {ent:.2f}")
axs[1].plot(st.session_state.stat_bist_counts, '-o', color='crimson', markersize=4)
axs[1].set_title("Число 'биомашин'")
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal')
axs[2].set_title("Автокорреляция углового профиля")
plot_area.pyplot(fig, clear_figure=True)
st.session_state.step += 1
time.sleep(speed / 1000.0)