|
import streamlit as st |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import random |
|
import time |
|
from scipy.stats import entropy as scipy_entropy |
|
|
|
|
|
seqlen = 60 |
|
steps = 10000 |
|
min_run, max_run = 1, 2 |
|
ANGLE_MAP = {'A': 60.0, 'C': 180.0, 'G': -60.0, 'T': -180.0, 'N': 0.0} |
|
bases = ['A', 'C', 'G', 'T'] |
|
lags_shown = 6 |
|
|
|
st.set_page_config(layout="wide") |
|
st.title("🌌 Визуализация торсионных биомашин") |
|
|
|
|
|
col1, col2, col3 = st.columns([1,1,2]) |
|
with col1: |
|
if 'running' not in st.session_state: |
|
st.session_state.running = False |
|
if st.button("▶️ Старт / ⏸ Стоп"): |
|
st.session_state.running = not st.session_state.running |
|
|
|
with col2: |
|
if st.button("🔄 Сброс"): |
|
st.session_state.running = False |
|
st.session_state.step = 0 |
|
st.session_state.seq = ''.join(random.choices(bases, k=seqlen)) |
|
st.session_state.stat_bist_counts = [] |
|
st.session_state.stat_entropy = [] |
|
st.session_state.stat_autocorr = [] |
|
|
|
with col3: |
|
speed = st.slider("⏱ Скорость обновления (мс)", 10, 1000, 200, step=10) |
|
|
|
|
|
if 'seq' not in st.session_state: |
|
st.session_state.seq = ''.join(random.choices(bases, k=seqlen)) |
|
if 'step' not in st.session_state: |
|
st.session_state.step = 0 |
|
if 'stat_bist_counts' not in st.session_state: |
|
st.session_state.stat_bist_counts = [] |
|
st.session_state.stat_entropy = [] |
|
st.session_state.stat_autocorr = [] |
|
|
|
|
|
def find_local_min_runs(profile, min_run=1, max_run=2): |
|
result = [] |
|
N = len(profile) |
|
i = 0 |
|
while i < N: |
|
run_val = profile[i] |
|
run_length = 1 |
|
while i + run_length < N and profile[i + run_length] == run_val: |
|
run_length += 1 |
|
if min_run <= run_length <= max_run: |
|
result.append((i, i + run_length - 1, run_val)) |
|
i += run_length |
|
return result |
|
|
|
def compute_autocorr(profile): |
|
profile = profile - np.mean(profile) |
|
result = np.correlate(profile, profile, mode='full') |
|
result = result[result.size // 2:] |
|
norm = np.max(result) if np.max(result) != 0 else 1 |
|
return result[:10] / norm |
|
|
|
def compute_entropy(profile): |
|
vals, counts = np.unique(profile, return_counts=True) |
|
p = counts / counts.sum() |
|
return scipy_entropy(p, base=2) |
|
|
|
def bio_mutate(seq): |
|
r = random.random() |
|
if r < 0.70: |
|
idx = random.randint(0, len(seq)-1) |
|
orig = seq[idx] |
|
prob = random.random() |
|
if orig in 'AG': |
|
newbase = 'C' if prob < 0.65 else random.choice(['T', 'C']) |
|
elif orig in 'CT': |
|
newbase = 'G' if prob < 0.65 else random.choice(['A', 'G']) |
|
else: |
|
newbase = random.choice([b for b in bases if b != orig]) |
|
seq = seq[:idx] + newbase + seq[idx+1:] |
|
elif r < 0.80: |
|
idx = random.randint(0, len(seq)-1) |
|
ins = ''.join(random.choices(bases, k=random.randint(1, 3))) |
|
seq = seq[:idx] + ins + seq[idx:] |
|
if len(seq) > seqlen: |
|
seq = seq[:seqlen] |
|
elif r < 0.90: |
|
if len(seq) > 4: |
|
idx = random.randint(0, len(seq)-2) |
|
dell = random.randint(1, min(3, len(seq)-idx)) |
|
seq = seq[:idx] + seq[idx+dell:] |
|
else: |
|
if len(seq) > 10: |
|
start = random.randint(0, len(seq)-6) |
|
end = start + random.randint(3,6) |
|
subseq = seq[start:end] |
|
subseq = subseq[::-1] |
|
seq = seq[:start] + subseq + seq[end:] |
|
while len(seq) < seqlen: |
|
seq += random.choice(bases) |
|
if len(seq) > seqlen: |
|
seq = seq[:seqlen] |
|
return seq |
|
|
|
|
|
plot_area = st.empty() |
|
fig, axs = plt.subplots(3, 1, figsize=(10, 8)) |
|
plt.subplots_adjust(hspace=0.5) |
|
|
|
|
|
while st.session_state.running: |
|
st.session_state.seq = bio_mutate(st.session_state.seq) |
|
torsion_profile = np.array([ANGLE_MAP.get(nt, 0.0) for nt in st.session_state.seq]) |
|
runs = find_local_min_runs(torsion_profile, min_run, max_run) |
|
ent = compute_entropy(torsion_profile) |
|
acorr = compute_autocorr(torsion_profile) |
|
|
|
st.session_state.stat_bist_counts = st.session_state.stat_bist_counts[-50:] + [len(runs)] |
|
st.session_state.stat_entropy = st.session_state.stat_entropy[-50:] + [ent] |
|
st.session_state.stat_autocorr = st.session_state.stat_autocorr[-50:] + [acorr] |
|
|
|
axs[0].cla() |
|
axs[1].cla() |
|
axs[2].cla() |
|
|
|
axs[0].plot(torsion_profile, color='royalblue') |
|
for start, end, val in runs: |
|
axs[0].axvspan(start, end, color="red", alpha=0.3) |
|
axs[0].plot(range(start, end+1), torsion_profile[start:end+1], 'ro', markersize=4) |
|
axs[0].set_ylim(-200, 200) |
|
axs[0].set_title(f"Шаг {st.session_state.step}: {st.session_state.seq}\nМашин: {len(runs)}, Энтропия: {ent:.2f}") |
|
|
|
axs[1].plot(st.session_state.stat_bist_counts, '-o', color='crimson', markersize=4) |
|
axs[1].set_title("Число 'биомашин'") |
|
|
|
axs[2].bar(np.arange(lags_shown), acorr[:lags_shown], color='teal') |
|
axs[2].set_title("Автокорреляция углового профиля") |
|
|
|
plot_area.pyplot(fig, clear_figure=True) |
|
st.session_state.step += 1 |
|
time.sleep(speed / 1000.0) |
|
|