Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import pandas as pd | |
import textstat | |
import os | |
# Récupération du token Hugging Face | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Fonction pour appeler l'API Zephyr-7B | |
def call_zephyr_api(prompt, hf_token=HF_TOKEN): | |
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta" | |
headers = {"Authorization": f"Bearer {hf_token}"} | |
payload = {"inputs": prompt} | |
try: | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=60) | |
response.raise_for_status() | |
return response.json()[0]["generated_text"].strip() | |
except Exception as e: | |
raise gr.Error(f"❌ Erreur d'appel API Hugging Face : {str(e)}") | |
# Fonction principale d'analyse | |
def full_analysis(text, history): | |
if not text: | |
return "Entrez une phrase.", "", 0, history, 0 | |
# 1. Demander à Zephyr de détecter le sentiment | |
prompt_sentiment = f""" | |
You are a financial news sentiment detector. | |
Given the following news text: | |
\"{text}\" | |
Respond only with one word: positive, neutral, or negative. | |
Do not add any explanation or extra text. | |
""" | |
detected_sentiment = call_zephyr_api(prompt_sentiment).lower() | |
if detected_sentiment not in ["positive", "neutral", "negative"]: | |
detected_sentiment = "neutral" | |
# 2. Demander à Zephyr d'expliquer | |
prompt_explanation = f""" | |
You are a financial analyst AI. | |
Given the following financial news: | |
\"{text}\" | |
The detected sentiment is: {detected_sentiment}. | |
Now explain clearly why the sentiment is {detected_sentiment}. | |
Write a concise paragraph. | |
""" | |
explanation = call_zephyr_api(prompt_explanation) | |
# 3. Calculer la clarté | |
clarity_score = textstat.flesch_reading_ease(explanation) | |
clarity_score = max(0, min(clarity_score, 100)) # Limité entre 0-100 | |
# 4. Sauvegarder dans l'historique | |
history.append({ | |
"Texte": text, | |
"Sentiment": detected_sentiment.capitalize(), | |
"Clarté": f"{clarity_score:.1f}", | |
"Explication": explanation | |
}) | |
return detected_sentiment.capitalize(), explanation, clarity_score, history, int(clarity_score) | |
# Fonction pour télécharger l'historique | |
def download_history(history): | |
if not history: | |
return None | |
df = pd.DataFrame(history) | |
file_path = "/tmp/history.csv" | |
df.to_csv(file_path, index=False) | |
return file_path | |
# Gradio Interface | |
def launch_app(): | |
with gr.Blocks() as iface: | |
gr.Markdown("# 📈 Analyse Financière Premium - Zephyr7B") | |
with gr.Row(): | |
input_text = gr.Textbox(label="Entrez votre question financière", lines=3) | |
with gr.Row(): | |
analyze_btn = gr.Button("Analyser") | |
download_btn = gr.Button("Télécharger l'historique") | |
sentiment_output = gr.Textbox(label="Sentiment Détecté") | |
explanation_output = gr.Textbox(label="Explication de l'IA", lines=5) | |
clarity_score_text = gr.Textbox(label="Score de Clarté (%)") | |
clarity_slider = gr.Slider(0, 100, label="Clarté (%)", interactive=False) | |
file_output = gr.File(label="Fichier CSV") | |
history = gr.State([]) | |
analyze_btn.click( | |
full_analysis, | |
inputs=[input_text, history], | |
outputs=[sentiment_output, explanation_output, clarity_score_text, history, clarity_slider] | |
) | |
download_btn.click( | |
download_history, | |
inputs=[history], | |
outputs=[file_output] | |
) | |
iface.launch() | |
if __name__ == "__main__": | |
launch_app() | |