DinoFrog's picture
Update app.py
1798572 verified
raw
history blame
6.13 kB
import gradio as gr
import requests
from transformers import pipeline
from langdetect import detect
import pandas as pd
import textstat
import matplotlib.pyplot as plt
import os
HF_TOKEN = os.getenv("HF_TOKEN")
# Fonction pour appeler l'API Mistral-7B
def call_mistral_api(prompt, hf_token=HF_TOKEN):
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
headers = {"Authorization": f"Bearer {hf_token}"}
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}}
try:
response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
response.raise_for_status()
return response.json()[0]["generated_text"]
except Exception as e:
return f"[ERREUR_API]: {e}"
# Chargement du modèle de sentiment
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
# Modèles de traduction
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
# Fonction pour suggérer le meilleur modèle
def suggest_model(text):
word_count = len(text.split())
if word_count < 50:
return "Rapide"
elif word_count <= 200:
return "Équilibré"
else:
return "Précis"
# Fonction pour générer un graphique de clarté
def plot_clarity(clarity_scores):
plt.figure(figsize=(8, 4))
plt.plot(range(1, len(clarity_scores) + 1), clarity_scores, marker='o')
plt.title("Évolution du Score de Clarté")
plt.xlabel("Numéro d'analyse")
plt.ylabel("Score de Clarté")
plt.ylim(0, 100)
plt.grid(True)
return plt.gcf()
# Fonction pour reset le graphique
def reset_clarity_graph():
return [], plot_clarity([])
# Fonction d'analyse
def full_analysis(text, mode, detail_mode, count, history, clarity_scores):
if not text:
return "Entrez une phrase.", "", "", 0, history, clarity_scores, None, None
try:
lang = detect(text)
except:
lang = "unknown"
if lang != "en":
text = translator_to_en(text, max_length=512)[0]['translation_text']
result = classifier(text)[0]
sentiment_output = f"Sentiment : {result['label']} (Score: {result['score']:.2f})"
prompt = f"""
You are a financial analyst AI.
Based on the following financial news: \"{text}\",
explain clearly why the sentiment is {result['label'].lower()}.
{"Write a concise paragraph." if detail_mode == "Normal" else "Write a detailed explanation over multiple paragraphs."}
"""
explanation_en = call_mistral_api(prompt)
explanation_fr = translator_to_fr(explanation_en, max_length=512)[0]['translation_text']
clarity_score = textstat.flesch_reading_ease(explanation_en)
clarity_scores.append(clarity_score)
count += 1
history.append({
"Texte": text,
"Sentiment": result['label'],
"Score": f"{result['score']:.2f}",
"Explication_EN": explanation_en,
"Explication_FR": explanation_fr,
"Clarté": f"{clarity_score:.1f}"
})
return sentiment_output, explanation_en, explanation_fr, clarity_score, count, history, clarity_scores, plot_clarity(clarity_scores)
# Fonction pour télécharger historique CSV
def download_history(history):
if not history:
return None
df = pd.DataFrame(history)
file_path = "/tmp/analysis_history.csv"
df.to_csv(file_path, index=False)
return file_path
# Interface Gradio
def launch_app():
with gr.Blocks(theme=gr.themes.Base(), css="body {background-color: #0D1117; color: white;} .gr-button {background-color: #161B22; border: 1px solid #30363D;}") as iface:
gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title")
gr.Markdown("Entrez une actualité financière. L'IA analyse et explique en anglais/français. Choisissez votre mode d'explication.")
count = gr.State(0)
history = gr.State([])
clarity_scores = gr.State([])
with gr.Row():
input_text = gr.Textbox(lines=4, placeholder="Entrez une actualité ici...", label="Texte à analyser")
with gr.Row():
mode_selector = gr.Dropdown(
choices=["Rapide", "Équilibré", "Précis"],
value="Équilibré",
label="Mode recommandé selon la taille"
)
detail_mode_selector = gr.Dropdown(
choices=["Normal", "Expert"],
value="Normal",
label="Niveau de détail"
)
analyze_btn = gr.Button("Analyser")
reset_graph_btn = gr.Button("Reset Graphique")
download_btn = gr.Button("Télécharger CSV")
with gr.Row():
sentiment_output = gr.Textbox(label="Résultat du Sentiment")
with gr.Row():
with gr.Column():
explanation_output_en = gr.Textbox(label="Explication en Anglais")
with gr.Column():
explanation_output_fr = gr.Textbox(label="Explication en Français")
clarity_score_output = gr.Textbox(label="Score de Clarté (Flesch Reading Ease)")
clarity_plot = gr.Plot(label="Graphique des Scores de Clarté")
download_file = gr.File(label="Fichier CSV")
input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector])
analyze_btn.click(
full_analysis,
inputs=[input_text, mode_selector, detail_mode_selector, count, history, clarity_scores],
outputs=[sentiment_output, explanation_output_en, explanation_output_fr, clarity_score_output, count, history, clarity_scores, clarity_plot]
)
reset_graph_btn.click(
reset_clarity_graph,
outputs=[clarity_scores, clarity_plot]
)
download_btn.click(
download_history,
inputs=[history],
outputs=[download_file]
)
iface.launch()
if __name__ == "__main__":
launch_app()