Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
from transformers import pipeline | |
from langdetect import detect | |
import pandas as pd | |
import textstat | |
import matplotlib.pyplot as plt | |
import os | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Fonction pour appeler l'API Mistral-7B | |
def call_mistral_api(prompt, hf_token=HF_TOKEN): | |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2" | |
headers = {"Authorization": f"Bearer {hf_token}"} | |
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 300}} | |
try: | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=60) | |
response.raise_for_status() | |
return response.json()[0]["generated_text"] | |
except Exception as e: | |
return f"[ERREUR_API]: {e}" | |
# Chargement du modèle de sentiment | |
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
# Modèles de traduction | |
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en") | |
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr") | |
# Fonction pour suggérer le meilleur modèle | |
def suggest_model(text): | |
word_count = len(text.split()) | |
if word_count < 50: | |
return "Rapide" | |
elif word_count <= 200: | |
return "Équilibré" | |
else: | |
return "Précis" | |
# Fonction pour générer un graphique de clarté | |
def plot_clarity(clarity_scores): | |
plt.figure(figsize=(8, 4)) | |
plt.plot(range(1, len(clarity_scores) + 1), clarity_scores, marker='o') | |
plt.title("Évolution du Score de Clarté") | |
plt.xlabel("Numéro d'analyse") | |
plt.ylabel("Score de Clarté") | |
plt.ylim(0, 100) | |
plt.grid(True) | |
return plt.gcf() | |
# Fonction pour reset le graphique | |
def reset_clarity_graph(): | |
return [], plot_clarity([]) | |
# Fonction d'analyse | |
def full_analysis(text, mode, detail_mode, count, history, clarity_scores): | |
if not text: | |
return "Entrez une phrase.", "", "", 0, history, clarity_scores, None, None | |
try: | |
lang = detect(text) | |
except: | |
lang = "unknown" | |
if lang != "en": | |
text = translator_to_en(text, max_length=512)[0]['translation_text'] | |
result = classifier(text)[0] | |
sentiment_output = f"Sentiment : {result['label']} (Score: {result['score']:.2f})" | |
prompt = f""" | |
You are a financial analyst AI. | |
Based on the following financial news: \"{text}\", | |
explain clearly why the sentiment is {result['label'].lower()}. | |
{"Write a concise paragraph." if detail_mode == "Normal" else "Write a detailed explanation over multiple paragraphs."} | |
""" | |
explanation_en = call_mistral_api(prompt) | |
explanation_fr = translator_to_fr(explanation_en, max_length=512)[0]['translation_text'] | |
clarity_score = textstat.flesch_reading_ease(explanation_en) | |
clarity_scores.append(clarity_score) | |
count += 1 | |
history.append({ | |
"Texte": text, | |
"Sentiment": result['label'], | |
"Score": f"{result['score']:.2f}", | |
"Explication_EN": explanation_en, | |
"Explication_FR": explanation_fr, | |
"Clarté": f"{clarity_score:.1f}" | |
}) | |
return sentiment_output, explanation_en, explanation_fr, clarity_score, count, history, clarity_scores, plot_clarity(clarity_scores) | |
# Fonction pour télécharger historique CSV | |
def download_history(history): | |
if not history: | |
return None | |
df = pd.DataFrame(history) | |
file_path = "/tmp/analysis_history.csv" | |
df.to_csv(file_path, index=False) | |
return file_path | |
# Interface Gradio | |
def launch_app(): | |
with gr.Blocks(theme=gr.themes.Base(), css="body {background-color: #0D1117; color: white;} .gr-button {background-color: #161B22; border: 1px solid #30363D;}") as iface: | |
gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title") | |
gr.Markdown("Entrez une actualité financière. L'IA analyse et explique en anglais/français. Choisissez votre mode d'explication.") | |
count = gr.State(0) | |
history = gr.State([]) | |
clarity_scores = gr.State([]) | |
with gr.Row(): | |
input_text = gr.Textbox(lines=4, placeholder="Entrez une actualité ici...", label="Texte à analyser") | |
with gr.Row(): | |
mode_selector = gr.Dropdown( | |
choices=["Rapide", "Équilibré", "Précis"], | |
value="Équilibré", | |
label="Mode recommandé selon la taille" | |
) | |
detail_mode_selector = gr.Dropdown( | |
choices=["Normal", "Expert"], | |
value="Normal", | |
label="Niveau de détail" | |
) | |
analyze_btn = gr.Button("Analyser") | |
reset_graph_btn = gr.Button("Reset Graphique") | |
download_btn = gr.Button("Télécharger CSV") | |
with gr.Row(): | |
sentiment_output = gr.Textbox(label="Résultat du Sentiment") | |
with gr.Row(): | |
with gr.Column(): | |
explanation_output_en = gr.Textbox(label="Explication en Anglais") | |
with gr.Column(): | |
explanation_output_fr = gr.Textbox(label="Explication en Français") | |
clarity_score_output = gr.Textbox(label="Score de Clarté (Flesch Reading Ease)") | |
clarity_plot = gr.Plot(label="Graphique des Scores de Clarté") | |
download_file = gr.File(label="Fichier CSV") | |
input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector]) | |
analyze_btn.click( | |
full_analysis, | |
inputs=[input_text, mode_selector, detail_mode_selector, count, history, clarity_scores], | |
outputs=[sentiment_output, explanation_output_en, explanation_output_fr, clarity_score_output, count, history, clarity_scores, clarity_plot] | |
) | |
reset_graph_btn.click( | |
reset_clarity_graph, | |
outputs=[clarity_scores, clarity_plot] | |
) | |
download_btn.click( | |
download_history, | |
inputs=[history], | |
outputs=[download_file] | |
) | |
iface.launch() | |
if __name__ == "__main__": | |
launch_app() | |