Spaces:
Sleeping
Sleeping
File size: 4,765 Bytes
ffb571b 14aa24c d179496 4504964 ffb571b 14aa24c ffb571b 14aa24c 4504964 ffb571b 5b0e9a8 ffb571b 850981e 5b0e9a8 ffb571b 5b0e9a8 ffb571b 5b0e9a8 ffb571b 5b0e9a8 ffb571b 14aa24c ffb571b 4504964 d179496 850981e d179496 14aa24c 850981e ffb571b 850981e ffb571b 850981e ffb571b 4504964 ffb571b 4504964 ffb571b 4504964 ffb571b 4504964 850981e ffb571b 850981e ffb571b 850981e ffb571b 5b0e9a8 ffb571b 4504964 ffb571b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
from transformers import pipeline
from langdetect import detect
import pandas as pd
import textstat
# Chargement du modèle de sentiment
classifier = pipeline(
"sentiment-analysis",
model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)
# Modèles de traduction
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
# Modèle explicatif CPU-friendly
explainer = pipeline("text2text-generation", model="facebook/blenderbot-1B-distill")
# Fonction pour suggérer le meilleur modèle
def suggest_model(text):
word_count = len(text.split())
if word_count < 50:
return "Rapide"
elif word_count <= 200:
return "Équilibré"
else:
return "Précis"
# Fonction d'analyse
def full_analysis(text, mode, detail_mode, count, history):
if not text:
return "Entrez une phrase.", "", "", 0, history, None
try:
lang = detect(text)
except:
lang = "unknown"
if lang != "en":
text = translator_to_en(text, max_length=512)[0]['translation_text']
result = classifier(text)[0]
sentiment_output = f"Sentiment : {result['label']} (Score: {result['score']:.2f})"
prompt = f"""
You are a financial analyst AI.
Based on the following financial news: \"{text}\",
explain clearly why the sentiment is {result['label'].lower()}.
{"Write a concise paragraph." if detail_mode == "Normal" else "Write a detailed explanation over multiple paragraphs."}
"""
explanation_en = explainer(prompt, max_length=300 if detail_mode == "Expert" else 150)[0]['generated_text']
explanation_fr = translator_to_fr(explanation_en, max_length=512)[0]['translation_text']
clarity_score = textstat.flesch_reading_ease(explanation_en)
count += 1
history.append({
"Texte": text,
"Sentiment": result['label'],
"Score": f"{result['score']:.2f}",
"Explication_EN": explanation_en,
"Explication_FR": explanation_fr,
"Clarté": f"{clarity_score:.1f}"
})
return sentiment_output, explanation_en, explanation_fr, clarity_score, count, history, None
# Fonction pour télécharger historique CSV
def download_history(history):
if not history:
return None
df = pd.DataFrame(history)
file_path = "/tmp/analysis_history.csv"
df.to_csv(file_path, index=False)
return file_path
# Interface Gradio
def launch_app():
with gr.Blocks(theme=gr.themes.Base(), css="body {background-color: #0D1117; color: white;} .gr-button {background-color: #161B22; border: 1px solid #30363D;}") as iface:
gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title")
gr.Markdown("Entrez une actualité financière. L'IA analyse et explique en anglais/français. Choisissez votre mode d'explication.")
count = gr.State(0)
history = gr.State([])
with gr.Row():
input_text = gr.Textbox(lines=4, placeholder="Entrez une actualité ici...", label="Texte à analyser")
with gr.Row():
mode_selector = gr.Dropdown(
choices=["Rapide", "Équilibré", "Précis"],
value="Équilibré",
label="Mode recommandé selon la taille"
)
detail_mode_selector = gr.Dropdown(
choices=["Normal", "Expert"],
value="Normal",
label="Niveau de détail"
)
analyze_btn = gr.Button("Analyser")
download_btn = gr.Button("Télécharger CSV")
with gr.Row():
sentiment_output = gr.Textbox(label="Résultat du Sentiment")
with gr.Row():
with gr.Column():
explanation_output_en = gr.Textbox(label="Explication en Anglais")
with gr.Column():
explanation_output_fr = gr.Textbox(label="Explication en Français")
clarity_score_output = gr.Textbox(label="Score de Clarté (Flesch Reading Ease)")
download_file = gr.File(label="Fichier CSV")
input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector])
analyze_btn.click(
full_analysis,
inputs=[input_text, mode_selector, detail_mode_selector, count, history],
outputs=[sentiment_output, explanation_output_en, explanation_output_fr, clarity_score_output, count, history, download_file]
)
download_btn.click(
download_history,
inputs=[history],
outputs=[download_file]
)
iface.launch()
if __name__ == "__main__":
launch_app()
|