Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,25 +5,26 @@ from huggingface_hub import InferenceClient
|
|
5 |
import pandas as pd
|
6 |
import os
|
7 |
import nltk
|
8 |
-
|
|
|
9 |
from nltk.tokenize import sent_tokenize
|
10 |
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
|
13 |
# Fonction pour appeler l'API Zephyr avec des paramètres ajustés
|
14 |
-
def call_zephyr_api(prompt, mode, hf_token=HF_TOKEN):
|
15 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
|
16 |
try:
|
17 |
if mode == "Rapide":
|
|
|
|
|
|
|
18 |
max_new_tokens = 100
|
19 |
temperature = 0.5
|
20 |
-
elif mode == "Équilibré":
|
21 |
-
max_new_tokens = 200
|
22 |
-
temperature = 0.7
|
23 |
else: # Précis
|
24 |
-
max_new_tokens =
|
25 |
-
temperature = 0.
|
26 |
-
response = client.text_generation
|
27 |
return response
|
28 |
except Exception as e:
|
29 |
raise gr.Error(f"❌ Erreur d'appel API Hugging Face : {str(e)}")
|
@@ -31,20 +32,14 @@ def call_zephyr_api(prompt, mode, hf_token=HF_TOKEN):
|
|
31 |
# Chargement du modèle de sentiment pour analyser les réponses
|
32 |
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
33 |
|
34 |
-
# Modèles de traduction
|
35 |
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
36 |
-
|
|
|
37 |
|
38 |
-
# Fonction pour traduire un texte long en le segmentant
|
39 |
def safe_translate_to_fr(text, max_length=512):
|
40 |
-
|
41 |
-
translated_sentences = []
|
42 |
-
|
43 |
-
for sentence in sentences:
|
44 |
-
translated = translator_to_fr(sentence, max_length=max_length)[0]['translation_text']
|
45 |
-
translated_sentences.append(translated)
|
46 |
-
|
47 |
-
return " ".join(translated_sentences)
|
48 |
|
49 |
# Fonction pour suggérer le meilleur modèle
|
50 |
def suggest_model(text):
|
@@ -60,20 +55,20 @@ def suggest_model(text):
|
|
60 |
def create_sentiment_gauge(sentiment, score):
|
61 |
score_percentage = score * 100
|
62 |
if sentiment.lower() == "neutral":
|
63 |
-
color = "
|
64 |
elif sentiment.lower() == "positive":
|
65 |
-
color = "
|
66 |
elif sentiment.lower() == "negative":
|
67 |
-
color = "
|
68 |
else:
|
69 |
-
color = "
|
70 |
|
71 |
html = f"""
|
72 |
<div style='width: 100%; max-width: 300px; margin: 10px 0;'>
|
73 |
-
<div style='background-color: #
|
74 |
<div style='background-color: {color}; width: {score_percentage}%; height: 100%; border-radius: 5px; transition: width 0.3s ease-in-out;'>
|
75 |
</div>
|
76 |
-
<span style='position: absolute; top: 0; left: 50%; transform: translateX(-50%); color:
|
77 |
{score_percentage:.1f}%
|
78 |
</span>
|
79 |
</div>
|
@@ -84,48 +79,51 @@ def create_sentiment_gauge(sentiment, score):
|
|
84 |
"""
|
85 |
return html
|
86 |
|
87 |
-
# Fonction d'analyse
|
88 |
-
def full_analysis(text, mode, detail_mode, count, history):
|
89 |
if not text:
|
90 |
return "Entrez une phrase.", "", "", 0, history, None, ""
|
91 |
|
|
|
|
|
|
|
92 |
try:
|
93 |
lang = detect(text)
|
94 |
except:
|
95 |
lang = "unknown"
|
96 |
|
97 |
if lang != "en":
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
You are a professional financial analyst AI with expertise in economic forecasting.
|
102 |
-
</s>
|
103 |
-
<|user|>
|
104 |
-
Given the following question about a potential economic event: "{text}"
|
105 |
|
106 |
-
|
107 |
-
</s>
|
108 |
-
<|assistant|>"""
|
109 |
-
prediction_response = call_zephyr_api(prediction_prompt, mode)
|
110 |
|
111 |
-
|
|
|
|
|
112 |
sentiment_output = f"Sentiment prédictif : {result['label']} (Score: {result['score']:.2f})"
|
113 |
sentiment_gauge = create_sentiment_gauge(result['label'], result['score'])
|
114 |
|
|
|
|
|
|
|
115 |
explanation_prompt = f"""<|system|>
|
116 |
-
You are a professional financial analyst AI.
|
117 |
</s>
|
118 |
<|user|>
|
119 |
Given the following question about a potential economic event: "{text}"
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
Now, explain why the sentiment is {result['label'].lower()} using a logical, fact-based explanation. Base your reasoning only on the predicted economic impact. Respond only with your financial analysis in one clear paragraph. Write in a clear and professional tone. {"Use simple language for a general audience." if detail_mode == "Normal" else "Use detailed financial terminology for an expert audience."}
|
126 |
</s>
|
127 |
<|assistant|>"""
|
128 |
-
explanation_en = call_zephyr_api(explanation_prompt, mode)
|
|
|
|
|
|
|
|
|
129 |
explanation_fr = safe_translate_to_fr(explanation_en, max_length=512)
|
130 |
|
131 |
count += 1
|
@@ -137,7 +135,7 @@ Now, explain why the sentiment is {result['label'].lower()} using a logical, fac
|
|
137 |
"Explication_FR": explanation_fr
|
138 |
})
|
139 |
|
140 |
-
return sentiment_output, explanation_en, explanation_fr, count, history, sentiment_gauge
|
141 |
|
142 |
# Fonction pour télécharger historique CSV
|
143 |
def download_history(history):
|
@@ -152,25 +150,39 @@ def download_history(history):
|
|
152 |
def launch_app():
|
153 |
custom_css = """
|
154 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
|
|
|
155 |
|
156 |
body {
|
157 |
-
background:
|
|
|
|
|
|
|
|
|
|
|
158 |
color: #E0E0E0;
|
159 |
font-family: 'Inter', sans-serif;
|
|
|
|
|
160 |
}
|
161 |
|
162 |
.gr-box {
|
163 |
-
background: #
|
164 |
border-radius: 12px !important;
|
165 |
-
border: 1px solid #
|
166 |
-
box-shadow: 0
|
167 |
-
padding:
|
168 |
-
margin:
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
}
|
170 |
|
171 |
.gr-textbox, .gr-dropdown {
|
172 |
-
background: #
|
173 |
-
border: 1px solid #
|
174 |
border-radius: 8px !important;
|
175 |
color: #E0E0E0 !important;
|
176 |
font-size: 16px !important;
|
@@ -180,38 +192,44 @@ def launch_app():
|
|
180 |
|
181 |
.gr-textbox:focus, .gr-dropdown:focus {
|
182 |
border-color: #FFD700 !important;
|
183 |
-
box-shadow: 0 0
|
184 |
}
|
185 |
|
186 |
.gr-button {
|
187 |
background: linear-gradient(90deg, #FFD700 0%, #D4AF37 100%) !important;
|
188 |
-
color: #
|
189 |
border: none !important;
|
190 |
border-radius: 8px !important;
|
191 |
padding: 12px 24px !important;
|
192 |
font-weight: 600 !important;
|
193 |
font-size: 16px !important;
|
194 |
transition: transform 0.1s ease, box-shadow 0.3s ease !important;
|
195 |
-
box-shadow: 0
|
196 |
}
|
197 |
|
198 |
.gr-button:hover {
|
199 |
transform: translateY(-2px) !important;
|
200 |
-
box-shadow: 0
|
201 |
}
|
202 |
|
203 |
h1, h2, h3 {
|
204 |
color: #FFD700 !important;
|
205 |
font-weight: 700 !important;
|
206 |
-
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
}
|
208 |
|
209 |
.gr-row {
|
210 |
-
margin:
|
211 |
}
|
212 |
|
213 |
.gr-column {
|
214 |
-
padding:
|
215 |
}
|
216 |
|
217 |
label {
|
@@ -224,35 +242,35 @@ def launch_app():
|
|
224 |
}
|
225 |
|
226 |
label::before {
|
227 |
-
|
|
|
228 |
margin-right: 8px;
|
229 |
}
|
230 |
|
|
|
|
|
|
|
|
|
231 |
.gr-html label::before {
|
232 |
-
content: '
|
233 |
}
|
234 |
|
235 |
.gr-file label::before {
|
236 |
-
content: '
|
237 |
}
|
238 |
|
239 |
.economic-question-section {
|
240 |
-
background
|
241 |
-
background-size: cover;
|
242 |
-
background-position: center;
|
243 |
-
background-repeat: no-repeat;
|
244 |
-
background-color: rgba(42, 42, 74, 0.9);
|
245 |
-
background-blend-mode: overlay;
|
246 |
border-radius: 12px;
|
247 |
-
padding:
|
248 |
margin: 20px 0;
|
249 |
-
box-shadow: 0
|
250 |
}
|
251 |
|
252 |
.economic-question-section .gr-textbox {
|
253 |
-
background: rgba(
|
254 |
border: 2px solid #FFD700 !important;
|
255 |
-
box-shadow: 0
|
256 |
font-size: 18px !important;
|
257 |
padding: 15px !important;
|
258 |
}
|
@@ -262,43 +280,73 @@ def launch_app():
|
|
262 |
box-shadow: 0 0 12px rgba(255, 215, 0, 0.5) !important;
|
263 |
}
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
.options-section {
|
266 |
display: flex;
|
267 |
-
|
268 |
-
gap:
|
269 |
margin-top: 15px;
|
270 |
}
|
271 |
|
272 |
.options-section .gr-dropdown {
|
273 |
width: 200px !important;
|
274 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
"""
|
276 |
|
277 |
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as iface:
|
278 |
gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title")
|
279 |
-
gr.Markdown("Posez une question sur un événement économique. L'IA
|
280 |
|
281 |
count = gr.State(0)
|
282 |
history = gr.State([])
|
283 |
|
284 |
with gr.Row(elem_classes=["economic-question-section"]):
|
285 |
-
with gr.Column(scale=
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
)
|
291 |
-
with gr.Row(elem_classes=["options-section"]):
|
292 |
-
mode_selector = gr.Dropdown(
|
293 |
-
choices=["Rapide", "Équilibré", "Précis"],
|
294 |
-
value="Équilibré",
|
295 |
-
label="Mode (longueur et style de réponse)"
|
296 |
)
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
301 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
with gr.Row():
|
304 |
analyze_btn = gr.Button("Analyser")
|
@@ -307,7 +355,8 @@ def launch_app():
|
|
307 |
|
308 |
with gr.Row():
|
309 |
with gr.Column(scale=1):
|
310 |
-
|
|
|
311 |
sentiment_gauge = gr.HTML(label="Jauge de Sentiment")
|
312 |
with gr.Column(scale=2):
|
313 |
with gr.Row():
|
@@ -321,7 +370,7 @@ def launch_app():
|
|
321 |
analyze_btn.click(
|
322 |
full_analysis,
|
323 |
inputs=[input_text, mode_selector, detail_mode_selector, count, history],
|
324 |
-
outputs=[sentiment_output, explanation_output_en, explanation_output_fr, count, history, sentiment_gauge]
|
325 |
)
|
326 |
|
327 |
download_btn.click(
|
@@ -330,7 +379,7 @@ def launch_app():
|
|
330 |
outputs=[download_file]
|
331 |
)
|
332 |
|
333 |
-
iface.launch(share=True)
|
334 |
|
335 |
if __name__ == "__main__":
|
336 |
launch_app()
|
|
|
5 |
import pandas as pd
|
6 |
import os
|
7 |
import nltk
|
8 |
+
import asyncio
|
9 |
+
nltk.download('punkt_tab')
|
10 |
from nltk.tokenize import sent_tokenize
|
11 |
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
|
14 |
# Fonction pour appeler l'API Zephyr avec des paramètres ajustés
|
15 |
+
async def call_zephyr_api(prompt, mode, hf_token=HF_TOKEN):
|
16 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
|
17 |
try:
|
18 |
if mode == "Rapide":
|
19 |
+
max_new_tokens = 50
|
20 |
+
temperature = 0.3
|
21 |
+
elif mode == "Équilibré":
|
22 |
max_new_tokens = 100
|
23 |
temperature = 0.5
|
|
|
|
|
|
|
24 |
else: # Précis
|
25 |
+
max_new_tokens = 150
|
26 |
+
temperature = 0.7
|
27 |
+
response = await asyncio.to_thread(client.text_generation, prompt, max_new_tokens=max_new_tokens, temperature=temperature)
|
28 |
return response
|
29 |
except Exception as e:
|
30 |
raise gr.Error(f"❌ Erreur d'appel API Hugging Face : {str(e)}")
|
|
|
32 |
# Chargement du modèle de sentiment pour analyser les réponses
|
33 |
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
|
34 |
|
35 |
+
# Modèles de traduction (optionnels, désactivés pour optimisation)
|
36 |
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
37 |
+
# Traduction en français désactivée pour l'instant
|
38 |
+
# translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
|
39 |
|
40 |
+
# Fonction pour traduire un texte long en le segmentant (désactivée pour l'instant)
|
41 |
def safe_translate_to_fr(text, max_length=512):
|
42 |
+
return "Traduction désactivée pour l'instant pour améliorer la vitesse."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Fonction pour suggérer le meilleur modèle
|
45 |
def suggest_model(text):
|
|
|
55 |
def create_sentiment_gauge(sentiment, score):
|
56 |
score_percentage = score * 100
|
57 |
if sentiment.lower() == "neutral":
|
58 |
+
color = "#A9A9A9"
|
59 |
elif sentiment.lower() == "positive":
|
60 |
+
color = "#2E8B57"
|
61 |
elif sentiment.lower() == "negative":
|
62 |
+
color = "#DC143C"
|
63 |
else:
|
64 |
+
color = "#A9A9A9"
|
65 |
|
66 |
html = f"""
|
67 |
<div style='width: 100%; max-width: 300px; margin: 10px 0;'>
|
68 |
+
<div style='background-color: #D3D3D3; border-radius: 5px; height: 20px; position: relative; box-shadow: 0 2px 4px rgba(0,0,0,0.2);'>
|
69 |
<div style='background-color: {color}; width: {score_percentage}%; height: 100%; border-radius: 5px; transition: width 0.3s ease-in-out;'>
|
70 |
</div>
|
71 |
+
<span style='position: absolute; top: 0; left: 50%; transform: translateX(-50%); color: #0A1D37; font-size: 12px; line-height: 20px; font-weight: 600;'>
|
72 |
{score_percentage:.1f}%
|
73 |
</span>
|
74 |
</div>
|
|
|
79 |
"""
|
80 |
return html
|
81 |
|
82 |
+
# Fonction d'analyse corrigée
|
83 |
+
async def full_analysis(text, mode, detail_mode, count, history):
|
84 |
if not text:
|
85 |
return "Entrez une phrase.", "", "", 0, history, None, ""
|
86 |
|
87 |
+
# Message de progression
|
88 |
+
yield "Analyse en cours... (Étape 1 : Détection de la langue)", "", "", count, history, None, ""
|
89 |
+
|
90 |
try:
|
91 |
lang = detect(text)
|
92 |
except:
|
93 |
lang = "unknown"
|
94 |
|
95 |
if lang != "en":
|
96 |
+
text_en = translator_to_en(text, max_length=512)[0]['translation_text']
|
97 |
+
else:
|
98 |
+
text_en = text
|
|
|
|
|
|
|
|
|
99 |
|
100 |
+
yield "Analyse en cours... (Étape 2 : Analyse du sentiment)", "", "", count, history, None, ""
|
|
|
|
|
|
|
101 |
|
102 |
+
# Analyse du sentiment avec RoBERTa sur le texte d'entrée
|
103 |
+
result = await asyncio.to_thread(classifier, text_en)
|
104 |
+
result = result[0]
|
105 |
sentiment_output = f"Sentiment prédictif : {result['label']} (Score: {result['score']:.2f})"
|
106 |
sentiment_gauge = create_sentiment_gauge(result['label'], result['score'])
|
107 |
|
108 |
+
yield "Analyse en cours... (Étape 3 : Explication de l'impact)", "", "", count, history, None, ""
|
109 |
+
|
110 |
+
# Appel à Zephyr pour expliquer l'impact basé sur le sentiment
|
111 |
explanation_prompt = f"""<|system|>
|
112 |
+
You are a professional financial analyst AI with expertise in economic forecasting.
|
113 |
</s>
|
114 |
<|user|>
|
115 |
Given the following question about a potential economic event: "{text}"
|
116 |
|
117 |
+
The predicted sentiment for this event is: {result['label'].lower()}.
|
118 |
|
119 |
+
Assume the event happens (e.g., if the question is "Will the Federal Reserve raise interest rates?", assume they do raise rates). Explain why this event would likely have a {result['label'].lower()} economic impact. Provide a concise explanation in one paragraph, focusing on the potential effects on the economy. {"Use simple language for a general audience." if detail_mode == "Normal" else "Use detailed financial terminology for an expert audience."}
|
|
|
|
|
120 |
</s>
|
121 |
<|assistant|>"""
|
122 |
+
explanation_en = await call_zephyr_api(explanation_prompt, mode)
|
123 |
+
|
124 |
+
yield "Analyse en cours... (Étape 4 : Traduction)", "", "", count, history, None, ""
|
125 |
+
|
126 |
+
# Traduction (désactivée pour l'instant)
|
127 |
explanation_fr = safe_translate_to_fr(explanation_en, max_length=512)
|
128 |
|
129 |
count += 1
|
|
|
135 |
"Explication_FR": explanation_fr
|
136 |
})
|
137 |
|
138 |
+
return sentiment_output, explanation_en, explanation_fr, count, history, sentiment_gauge, ""
|
139 |
|
140 |
# Fonction pour télécharger historique CSV
|
141 |
def download_history(history):
|
|
|
150 |
def launch_app():
|
151 |
custom_css = """
|
152 |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
|
153 |
+
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css');
|
154 |
|
155 |
body {
|
156 |
+
background-image: url('https://images.unsplash.com/photo-1593672715438-d88a70629abe?q=80&w=2070&auto=format&fit=crop');
|
157 |
+
background-size: cover;
|
158 |
+
background-position: center;
|
159 |
+
background-attachment: fixed;
|
160 |
+
background-color: #0A1D37;
|
161 |
+
background-blend-mode: overlay;
|
162 |
color: #E0E0E0;
|
163 |
font-family: 'Inter', sans-serif;
|
164 |
+
margin: 0;
|
165 |
+
padding: 20px;
|
166 |
}
|
167 |
|
168 |
.gr-box {
|
169 |
+
background: #1A3C34 !important;
|
170 |
border-radius: 12px !important;
|
171 |
+
border: 1px solid #FFD700 !important;
|
172 |
+
box-shadow: 0 6px 16px rgba(0, 0, 0, 0.4) !important;
|
173 |
+
padding: 25px !important;
|
174 |
+
margin: 15px 0 !important;
|
175 |
+
transition: transform 0.2s ease, box-shadow 0.3s ease !important;
|
176 |
+
}
|
177 |
+
|
178 |
+
.gr-box:hover {
|
179 |
+
transform: translateY(-3px) !important;
|
180 |
+
box-shadow: 0 8px 20px rgba(255, 215, 0, 0.3) !important;
|
181 |
}
|
182 |
|
183 |
.gr-textbox, .gr-dropdown {
|
184 |
+
background: #2E4A43 !important;
|
185 |
+
border: 1px solid #FFD700 !important;
|
186 |
border-radius: 8px !important;
|
187 |
color: #E0E0E0 !important;
|
188 |
font-size: 16px !important;
|
|
|
192 |
|
193 |
.gr-textbox:focus, .gr-dropdown:focus {
|
194 |
border-color: #FFD700 !important;
|
195 |
+
box-shadow: 0 0 10px rgba(255, 215, 0, 0.4) !important;
|
196 |
}
|
197 |
|
198 |
.gr-button {
|
199 |
background: linear-gradient(90deg, #FFD700 0%, #D4AF37 100%) !important;
|
200 |
+
color: #0A1D37 !important;
|
201 |
border: none !important;
|
202 |
border-radius: 8px !important;
|
203 |
padding: 12px 24px !important;
|
204 |
font-weight: 600 !important;
|
205 |
font-size: 16px !important;
|
206 |
transition: transform 0.1s ease, box-shadow 0.3s ease !important;
|
207 |
+
box-shadow: 0 3px 10px rgba(255, 215, 0, 0.3) !important;
|
208 |
}
|
209 |
|
210 |
.gr-button:hover {
|
211 |
transform: translateY(-2px) !important;
|
212 |
+
box-shadow: 0 6px 14px rgba(255, 215, 0, 0.5) !important;
|
213 |
}
|
214 |
|
215 |
h1, h2, h3 {
|
216 |
color: #FFD700 !important;
|
217 |
font-weight: 700 !important;
|
218 |
+
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3) !important;
|
219 |
+
animation: fadeIn 1s ease-in-out;
|
220 |
+
}
|
221 |
+
|
222 |
+
@keyframes fadeIn {
|
223 |
+
from { opacity: 0; transform: translateY(-10px); }
|
224 |
+
to { opacity: 1; transform: translateY(0); }
|
225 |
}
|
226 |
|
227 |
.gr-row {
|
228 |
+
margin: 20px 0 !important;
|
229 |
}
|
230 |
|
231 |
.gr-column {
|
232 |
+
padding: 15px !important;
|
233 |
}
|
234 |
|
235 |
label {
|
|
|
242 |
}
|
243 |
|
244 |
label::before {
|
245 |
+
font-family: "Font Awesome 6 Free";
|
246 |
+
font-weight: 900;
|
247 |
margin-right: 8px;
|
248 |
}
|
249 |
|
250 |
+
.gr-textbox label::before {
|
251 |
+
content: '\\f201';
|
252 |
+
}
|
253 |
+
|
254 |
.gr-html label::before {
|
255 |
+
content: '\\f080';
|
256 |
}
|
257 |
|
258 |
.gr-file label::before {
|
259 |
+
content: '\\f019';
|
260 |
}
|
261 |
|
262 |
.economic-question-section {
|
263 |
+
background: rgba(26, 60, 52, 0.9) !important;
|
|
|
|
|
|
|
|
|
|
|
264 |
border-radius: 12px;
|
265 |
+
padding: 25px;
|
266 |
margin: 20px 0;
|
267 |
+
box-shadow: 0 6px 16px rgba(0, 0, 0, 0.4);
|
268 |
}
|
269 |
|
270 |
.economic-question-section .gr-textbox {
|
271 |
+
background: rgba(46, 74, 67, 0.8) !important;
|
272 |
border: 2px solid #FFD700 !important;
|
273 |
+
box-shadow: 0 3px 10px rgba(255, 215, 0, 0.3) !important;
|
274 |
font-size: 18px !important;
|
275 |
padding: 15px !important;
|
276 |
}
|
|
|
280 |
box-shadow: 0 0 12px rgba(255, 215, 0, 0.5) !important;
|
281 |
}
|
282 |
|
283 |
+
.prompt-box {
|
284 |
+
background: rgba(46, 74, 67, 0.6) !important;
|
285 |
+
border: 1px solid #FFD700 !important;
|
286 |
+
border-radius: 8px !important;
|
287 |
+
color: #E0E0E0 !important;
|
288 |
+
font-size: 16px !important;
|
289 |
+
padding: 12px !important;
|
290 |
+
margin-top: 10px !important;
|
291 |
+
}
|
292 |
+
|
293 |
+
.prompt-box label::before {
|
294 |
+
content: '\\f075';
|
295 |
+
}
|
296 |
+
|
297 |
.options-section {
|
298 |
display: flex;
|
299 |
+
flex-direction: column;
|
300 |
+
gap: 15px;
|
301 |
margin-top: 15px;
|
302 |
}
|
303 |
|
304 |
.options-section .gr-dropdown {
|
305 |
width: 200px !important;
|
306 |
}
|
307 |
+
|
308 |
+
.options-section .gr-dropdown label::before {
|
309 |
+
content: '\\f0c9';
|
310 |
+
}
|
311 |
+
|
312 |
+
.progress-message {
|
313 |
+
color: #FFD700 !important;
|
314 |
+
font-style: italic;
|
315 |
+
margin-bottom: 10px;
|
316 |
+
}
|
317 |
"""
|
318 |
|
319 |
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as iface:
|
320 |
gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title")
|
321 |
+
gr.Markdown("Posez une question sur un événement économique. L'IA analyse le sentiment et explique l'impact.", elem_classes=["subtitle"])
|
322 |
|
323 |
count = gr.State(0)
|
324 |
history = gr.State([])
|
325 |
|
326 |
with gr.Row(elem_classes=["economic-question-section"]):
|
327 |
+
with gr.Column(scale=2):
|
328 |
+
with gr.Column():
|
329 |
+
input_text = gr.Textbox(
|
330 |
+
lines=4,
|
331 |
+
label="Question Économique"
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
)
|
333 |
+
prompt_display = gr.Textbox(
|
334 |
+
value="Une hausse des taux causerait-elle une récession ?",
|
335 |
+
label="Exemple de Prompt",
|
336 |
+
interactive=False,
|
337 |
+
elem_classes=["prompt-box"]
|
338 |
)
|
339 |
+
with gr.Column(scale=1, elem_classes=["options-section"]):
|
340 |
+
mode_selector = gr.Dropdown(
|
341 |
+
choices=["Rapide", "Équilibré", "Précis"],
|
342 |
+
value="Équilibré",
|
343 |
+
label="Mode (longueur et style de réponse)"
|
344 |
+
)
|
345 |
+
detail_mode_selector = gr.Dropdown(
|
346 |
+
choices=["Normal", "Expert"],
|
347 |
+
value="Normal",
|
348 |
+
label="Niveau de détail (simplicité ou technicité)"
|
349 |
+
)
|
350 |
|
351 |
with gr.Row():
|
352 |
analyze_btn = gr.Button("Analyser")
|
|
|
355 |
|
356 |
with gr.Row():
|
357 |
with gr.Column(scale=1):
|
358 |
+
progress_message = gr.Textbox(label="Progression", elem_classes=["progress-message"], interactive=False)
|
359 |
+
sentiment_output = gr.Textbox(label="Sentiment Prédictif")
|
360 |
sentiment_gauge = gr.HTML(label="Jauge de Sentiment")
|
361 |
with gr.Column(scale=2):
|
362 |
with gr.Row():
|
|
|
370 |
analyze_btn.click(
|
371 |
full_analysis,
|
372 |
inputs=[input_text, mode_selector, detail_mode_selector, count, history],
|
373 |
+
outputs=[sentiment_output, explanation_output_en, explanation_output_fr, count, history, sentiment_gauge, progress_message]
|
374 |
)
|
375 |
|
376 |
download_btn.click(
|
|
|
379 |
outputs=[download_file]
|
380 |
)
|
381 |
|
382 |
+
iface.launch(share=True)
|
383 |
|
384 |
if __name__ == "__main__":
|
385 |
launch_app()
|