Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ from langdetect import detect
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import pandas as pd
|
6 |
import os
|
|
|
|
|
|
|
7 |
|
8 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
9 |
|
@@ -11,16 +14,15 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
11 |
def call_zephyr_api(prompt, mode, hf_token=HF_TOKEN):
|
12 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
|
13 |
try:
|
14 |
-
# Ajuster les paramètres en fonction du mode
|
15 |
if mode == "Rapide":
|
16 |
-
max_new_tokens = 100
|
17 |
-
temperature = 0.5
|
18 |
elif mode == "Équilibré":
|
19 |
-
max_new_tokens = 200
|
20 |
-
temperature = 0.7
|
21 |
else: # Précis
|
22 |
-
max_new_tokens = 300
|
23 |
-
temperature = 0.9
|
24 |
response = client.text_generation(prompt, max_new_tokens=max_new_tokens, temperature=temperature)
|
25 |
return response
|
26 |
except Exception as e:
|
@@ -33,6 +35,20 @@ classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetun
|
|
33 |
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
34 |
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Fonction pour suggérer le meilleur modèle
|
37 |
def suggest_model(text):
|
38 |
word_count = len(text.split())
|
@@ -57,14 +73,14 @@ def create_sentiment_gauge(sentiment, score):
|
|
57 |
|
58 |
html = f"""
|
59 |
<div style='width: 100%; max-width: 300px; margin: 10px 0;'>
|
60 |
-
<div style='background-color: #e0e0e0; border-radius: 5px; height: 20px; position: relative;'>
|
61 |
-
<div style='background-color: {color}; width: {score_percentage}%; height: 100%; border-radius: 5px;'>
|
62 |
</div>
|
63 |
-
<span style='position: absolute; top: 0; left: 50%; transform: translateX(-50%); color: black; font-size: 12px; line-height: 20px;'>
|
64 |
{score_percentage:.1f}%
|
65 |
</span>
|
66 |
</div>
|
67 |
-
<div style='text-align: center; font-size: 14px; margin-top: 5px;'>
|
68 |
Sentiment: {sentiment}
|
69 |
</div>
|
70 |
</div>
|
@@ -116,7 +132,7 @@ Now, explain why the sentiment is {result['label'].lower()} using a logical, fac
|
|
116 |
</s>
|
117 |
<|assistant|>"""
|
118 |
explanation_en = call_zephyr_api(explanation_prompt, mode)
|
119 |
-
explanation_fr =
|
120 |
|
121 |
count += 1
|
122 |
history.append({
|
@@ -138,44 +154,134 @@ def download_history(history):
|
|
138 |
df.to_csv(file_path, index=False)
|
139 |
return file_path
|
140 |
|
141 |
-
# Interface Gradio
|
142 |
def launch_app():
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title")
|
145 |
-
gr.Markdown("
|
146 |
|
147 |
count = gr.State(0)
|
148 |
history = gr.State([])
|
149 |
|
150 |
with gr.Row():
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
with gr.Row():
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
label="Mode (longueur et style de réponse)"
|
158 |
-
)
|
159 |
-
detail_mode_selector = gr.Dropdown(
|
160 |
-
choices=["Normal", "Expert"],
|
161 |
-
value="Normal",
|
162 |
-
label="Niveau de détail (simplicité ou technicité)"
|
163 |
-
)
|
164 |
-
|
165 |
-
analyze_btn = gr.Button("Analyser")
|
166 |
-
reset_graph_btn = gr.Button("Reset Graphique")
|
167 |
-
download_btn = gr.Button("Télécharger CSV")
|
168 |
-
|
169 |
-
with gr.Row():
|
170 |
-
sentiment_output = gr.Textbox(label="Résultat du Sentiment Prédictif")
|
171 |
-
|
172 |
-
sentiment_gauge = gr.HTML(label="Jauge de Sentiment")
|
173 |
|
174 |
with gr.Row():
|
175 |
-
with gr.Column():
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
179 |
|
180 |
download_file = gr.File(label="Fichier CSV")
|
181 |
|
|
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import pandas as pd
|
6 |
import os
|
7 |
+
import nltk
|
8 |
+
nltk.download('punkt')
|
9 |
+
from nltk.tokenize import sent_tokenize
|
10 |
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
|
|
|
14 |
def call_zephyr_api(prompt, mode, hf_token=HF_TOKEN):
|
15 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
|
16 |
try:
|
|
|
17 |
if mode == "Rapide":
|
18 |
+
max_new_tokens = 100
|
19 |
+
temperature = 0.5
|
20 |
elif mode == "Équilibré":
|
21 |
+
max_new_tokens = 200
|
22 |
+
temperature = 0.7
|
23 |
else: # Précis
|
24 |
+
max_new_tokens = 300
|
25 |
+
temperature = 0.9
|
26 |
response = client.text_generation(prompt, max_new_tokens=max_new_tokens, temperature=temperature)
|
27 |
return response
|
28 |
except Exception as e:
|
|
|
35 |
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
|
36 |
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
|
37 |
|
38 |
+
# Fonction pour traduire un texte long en le segmentant
|
39 |
+
def safe_translate_to_fr(text, max_length=512):
|
40 |
+
# Segmenter le texte en phrases
|
41 |
+
sentences = sent_tokenize(text)
|
42 |
+
translated_sentences = []
|
43 |
+
|
44 |
+
for sentence in sentences:
|
45 |
+
# Traduire chaque phrase individuellement
|
46 |
+
translated = translator_to_fr(sentence, max_length=max_length)[0]['translation_text']
|
47 |
+
translated_sentences.append(translated)
|
48 |
+
|
49 |
+
# Recombiner les phrases traduites
|
50 |
+
return " ".join(translated_sentences)
|
51 |
+
|
52 |
# Fonction pour suggérer le meilleur modèle
|
53 |
def suggest_model(text):
|
54 |
word_count = len(text.split())
|
|
|
73 |
|
74 |
html = f"""
|
75 |
<div style='width: 100%; max-width: 300px; margin: 10px 0;'>
|
76 |
+
<div style='background-color: #e0e0e0; border-radius: 5px; height: 20px; position: relative; box-shadow: 0 2px 4px rgba(0,0,0,0.2);'>
|
77 |
+
<div style='background-color: {color}; width: {score_percentage}%; height: 100%; border-radius: 5px; transition: width 0.3s ease-in-out;'>
|
78 |
</div>
|
79 |
+
<span style='position: absolute; top: 0; left: 50%; transform: translateX(-50%); color: black; font-size: 12px; line-height: 20px; font-weight: 600;'>
|
80 |
{score_percentage:.1f}%
|
81 |
</span>
|
82 |
</div>
|
83 |
+
<div style='text-align: center; font-size: 14px; margin-top: 5px; color: #E0E0E0;'>
|
84 |
Sentiment: {sentiment}
|
85 |
</div>
|
86 |
</div>
|
|
|
132 |
</s>
|
133 |
<|assistant|>"""
|
134 |
explanation_en = call_zephyr_api(explanation_prompt, mode)
|
135 |
+
explanation_fr = safe_translate_to_fr(explanation_en, max_length=512)
|
136 |
|
137 |
count += 1
|
138 |
history.append({
|
|
|
154 |
df.to_csv(file_path, index=False)
|
155 |
return file_path
|
156 |
|
157 |
+
# Interface Gradio améliorée
|
158 |
def launch_app():
|
159 |
+
custom_css = """
|
160 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
|
161 |
+
|
162 |
+
body {
|
163 |
+
background: linear-gradient(135deg, #1A1A2E 0%, #16213E 100%);
|
164 |
+
color: #E0E0E0;
|
165 |
+
font-family: 'Inter', sans-serif;
|
166 |
+
}
|
167 |
+
|
168 |
+
.gr-box {
|
169 |
+
background: #2A2A4A !important;
|
170 |
+
border-radius: 12px !important;
|
171 |
+
border: 1px solid #3A3A5A !important;
|
172 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3) !important;
|
173 |
+
padding: 20px !important;
|
174 |
+
margin: 10px 0 !important;
|
175 |
+
}
|
176 |
+
|
177 |
+
.gr-textbox, .gr-dropdown {
|
178 |
+
background: #3A3A5A !important;
|
179 |
+
border: 1px solid #4A4A7A !important;
|
180 |
+
border-radius: 8px !important;
|
181 |
+
color: #E0E0E0 !important;
|
182 |
+
font-size: 16px !important;
|
183 |
+
padding: 12px !important;
|
184 |
+
transition: border-color 0.3s ease, box-shadow 0.3s ease !important;
|
185 |
+
}
|
186 |
+
|
187 |
+
.gr-textbox:focus, .gr-dropdown:focus {
|
188 |
+
border-color: #FFD700 !important;
|
189 |
+
box-shadow: 0 0 8px rgba(255, 215, 0, 0.3) !important;
|
190 |
+
}
|
191 |
+
|
192 |
+
.gr-button {
|
193 |
+
background: linear-gradient(90deg, #FFD700 0%, #D4AF37 100%) !important;
|
194 |
+
color: #1A1A2E !important;
|
195 |
+
border: none !important;
|
196 |
+
border-radius: 8px !important;
|
197 |
+
padding: 12px 24px !important;
|
198 |
+
font-weight: 600 !important;
|
199 |
+
font-size: 16px !important;
|
200 |
+
transition: transform 0.1s ease, box-shadow 0.3s ease !important;
|
201 |
+
box-shadow: 0 2px 8px rgba(255, 215, 0, 0.2) !important;
|
202 |
+
}
|
203 |
+
|
204 |
+
.gr-button:hover {
|
205 |
+
transform: translateY(-2px) !important;
|
206 |
+
box-shadow: 0 4px 12px rgba(255, 215, 0, 0.4) !important;
|
207 |
+
}
|
208 |
+
|
209 |
+
h1, h2, h3 {
|
210 |
+
color: #FFD700 !important;
|
211 |
+
font-weight: 700 !important;
|
212 |
+
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2) !important;
|
213 |
+
}
|
214 |
+
|
215 |
+
.gr-row {
|
216 |
+
margin: 15px 0 !important;
|
217 |
+
}
|
218 |
+
|
219 |
+
.gr-column {
|
220 |
+
padding: 10px !important;
|
221 |
+
}
|
222 |
+
|
223 |
+
label {
|
224 |
+
color: #FFD700 !important;
|
225 |
+
font-weight: 600 !important;
|
226 |
+
font-size: 16px !important;
|
227 |
+
margin-bottom: 8px !important;
|
228 |
+
display: flex !important;
|
229 |
+
align-items: center !important;
|
230 |
+
}
|
231 |
+
|
232 |
+
label::before {
|
233 |
+
content: '📊 ';
|
234 |
+
margin-right: 8px;
|
235 |
+
}
|
236 |
+
|
237 |
+
.gr-html label::before {
|
238 |
+
content: '📈 ';
|
239 |
+
}
|
240 |
+
|
241 |
+
.gr-file label::before {
|
242 |
+
content: '💾 ';
|
243 |
+
}
|
244 |
+
"""
|
245 |
+
|
246 |
+
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as iface:
|
247 |
gr.Markdown("# 📈 Analyse Financière Premium + Explication IA", elem_id="title")
|
248 |
+
gr.Markdown("Posez une question sur un événement économique. L'IA prédit l'impact et attribue un sentiment (positif, négatif, neutre).", elem_classes=["subtitle"])
|
249 |
|
250 |
count = gr.State(0)
|
251 |
history = gr.State([])
|
252 |
|
253 |
with gr.Row():
|
254 |
+
with gr.Column(scale=2):
|
255 |
+
input_text = gr.Textbox(
|
256 |
+
lines=4,
|
257 |
+
placeholder="Entrez une question ici (ex. 'La Réserve fédérale augmentera-t-elle ses taux d'intérêt avant 2025 ?')",
|
258 |
+
label="Question Économique"
|
259 |
+
)
|
260 |
+
with gr.Column(scale=1):
|
261 |
+
mode_selector = gr.Dropdown(
|
262 |
+
choices=["Rapide", "Équilibré", "Précis"],
|
263 |
+
value="Équilibré",
|
264 |
+
label="Mode (longueur et style de réponse)"
|
265 |
+
)
|
266 |
+
detail_mode_selector = gr.Dropdown(
|
267 |
+
choices=["Normal", "Expert"],
|
268 |
+
value="Normal",
|
269 |
+
label="Niveau de détail (simplicité ou technicité)"
|
270 |
+
)
|
271 |
|
272 |
with gr.Row():
|
273 |
+
analyze_btn = gr.Button("Analyser")
|
274 |
+
reset_graph_btn = gr.Button("Réinitialiser")
|
275 |
+
download_btn = gr.Button("Télécharger CSV")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
with gr.Row():
|
278 |
+
with gr.Column(scale=1):
|
279 |
+
sentiment_output = gr.Textbox(label="Résultat du Sentiment Prédictif")
|
280 |
+
sentiment_gauge = gr.HTML(label="Jauge de Sentiment")
|
281 |
+
with gr.Column(scale=2):
|
282 |
+
with gr.Row():
|
283 |
+
explanation_output_en = gr.Textbox(label="Explication en Anglais")
|
284 |
+
explanation_output_fr = gr.Textbox(label="Explication en Français")
|
285 |
|
286 |
download_file = gr.File(label="Fichier CSV")
|
287 |
|