File size: 35,414 Bytes
c3e56e6
 
39c1e1e
 
f4115c6
c3e56e6
f4115c6
 
 
b3c35e4
58ea642
677c37b
 
8fb2b84
28f4e7c
8fb2b84
28f4e7c
 
8fb2b84
28f4e7c
 
8fb2b84
28f4e7c
 
 
8fb2b84
28f4e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb2b84
28f4e7c
 
8fb2b84
 
 
 
39c1e1e
677c37b
39c1e1e
 
 
 
 
 
 
 
677c37b
39c1e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677c37b
39c1e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677c37b
39c1e1e
677c37b
39c1e1e
 
58ea642
f4115c6
 
 
 
 
 
 
58ea642
f4115c6
 
 
5e1a778
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4257f
 
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4257f
f4115c6
5e1a778
f4115c6
 
 
9c4257f
f4115c6
 
 
 
 
 
2b148a9
f4115c6
 
 
 
 
 
 
 
 
 
 
 
2b148a9
f4115c6
 
 
 
 
 
 
 
2b148a9
f4115c6
 
 
 
 
 
 
 
 
2b148a9
f4115c6
 
 
 
 
 
 
 
 
9c4257f
f4115c6
 
 
 
 
 
 
 
 
0a31a84
f4115c6
 
 
 
 
 
 
 
 
 
 
 
0a31a84
f4115c6
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
 
 
 
 
 
 
 
4e8c834
f4115c6
 
 
 
 
 
 
 
 
4e8c834
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e8c834
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d202deb
f4115c6
 
 
 
 
 
 
 
 
c3e56e6
e48a9d8
4a1664c
cc7434e
4a1664c
e48a9d8
4a1664c
 
 
 
 
e48a9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
cc7434e
e48a9d8
7d50d8a
 
4a1664c
7d50d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
e48a9d8
cc7434e
 
e48a9d8
 
4a1664c
 
c3e56e6
e48a9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
cc7434e
e48a9d8
 
cc7434e
e48a9d8
 
 
 
 
 
cc7434e
e48a9d8
 
 
f4115c6
 
 
 
 
c3e56e6
29b1e08
4a1664c
cc7434e
4a1664c
29b1e08
4a1664c
 
 
 
 
29b1e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
cc7434e
29b1e08
 
4a1664c
 
 
 
 
29b1e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
cc7434e
4a1664c
29b1e08
cc7434e
 
29b1e08
f4115c6
4a1664c
 
f4115c6
29b1e08
 
 
 
 
 
 
 
 
 
 
 
 
cc7434e
29b1e08
 
cc7434e
29b1e08
 
 
 
 
 
cc7434e
29b1e08
 
 
c3e56e6
cc7434e
f4115c6
cc7434e
 
f4115c6
c3e56e6
29b1e08
cc7434e
 
4a1664c
29b1e08
4a1664c
 
 
 
 
29b1e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
cc7434e
29b1e08
cc7434e
 
 
 
4a1664c
cc7434e
29b1e08
 
cc7434e
 
29b1e08
 
cc7434e
 
 
 
29b1e08
cc7434e
29b1e08
 
cc7434e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
cc7434e
4a1664c
29b1e08
cc7434e
 
 
29b1e08
f4115c6
4a1664c
cc7434e
 
f4115c6
29b1e08
 
 
 
 
 
 
 
cc7434e
 
29b1e08
 
 
 
cc7434e
29b1e08
 
cc7434e
29b1e08
 
 
 
 
 
cc7434e
29b1e08
 
 
f4115c6
c65b183
f4115c6
 
 
c0b2589
29b1e08
4a1664c
cc7434e
4a1664c
29b1e08
4a1664c
 
 
 
 
29b1e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
cc7434e
4a1664c
29b1e08
cc7434e
65b6204
c65b183
29b1e08
f4115c6
4a1664c
f4115c6
 
4a1664c
 
 
 
 
29b1e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc7434e
4a1664c
 
cc7434e
f4115c6
 
 
29b1e08
 
 
 
 
 
 
 
 
 
65b6204
29b1e08
c65b183
29b1e08
 
 
 
cc7434e
29b1e08
 
cc7434e
29b1e08
 
 
 
 
 
cc7434e
29b1e08
 
 
f4115c6
 
65b6204
47a6fb8
65b6204
 
 
fc20d9a
65b6204
aef94b3
65b6204
 
92e6065
65b6204
 
aef94b3
65b6204
 
aef94b3
65b6204
 
 
 
cc7434e
 
f4115c6
 
fbb3473
cc7434e
 
f4115c6
cc7434e
 
fbb3473
 
 
 
 
 
 
 
 
 
 
 
cc7434e
b4485a3
f4115c6
 
fbb3473
cc7434e
 
 
f4115c6
cc7434e
 
f4115c6
fbb3473
f4115c6
cc7434e
b4485a3
f4115c6
 
aef94b3
cc7434e
c5442ce
 
c65b183
b4485a3
cc7434e
f4115c6
cc7434e
c3e56e6
f4115c6
 
eb74572
f4115c6
 
 
 
cc7434e
 
 
 
b4485a3
 
cc7434e
 
f4115c6
c3e56e6
f4115c6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re

def install_espeak():
    """检测并安装espeak-ng依赖"""
    try:
        # 检查espeak-ng是否已安装
        result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
        if result.returncode != 0:
            print("检测到系统中未安装espeak-ng,正在尝试安装...")
            # 尝试使用apt-get安装espeak-ng及其数据
            subprocess.run(["apt-get", "update"], check=True)
            # 安装 espeak-ng 和对应的语言数据包
            subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
            print("espeak-ng及其数据包安装成功!")
        else:
            print("espeak-ng已安装在系统中。")
            # 即使已安装,也尝试更新数据确保完整性 (可选,但有时有帮助)
            # print("尝试更新 espeak-ng 数据...")
            # subprocess.run(["apt-get", "update"], check=True)
            # subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)

        # 验证中文支持 (可选)
        try:
            voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
            if "cmn" in voices_result.stdout:
                print("espeak-ng 支持 'cmn' 语言。")
            else:
                print("警告:espeak-ng 安装了,但 'cmn' 语言似乎仍不可用。")
        except Exception as e:
             print(f"验证 espeak-ng 中文支持时出错(可能不影响功能): {e}")

    except Exception as e:
        print(f"安装espeak-ng时出错: {e}")
        print("请尝试手动运行: apt-get update && apt-get install -y espeak-ng espeak-ng-data")

# 在所有其他操作之前安装espeak
install_espeak()

def patch_langsegment_init():
    try:
        # 尝试找到 LangSegment 包的位置
        spec = importlib.util.find_spec("LangSegment")
        if spec is None or spec.origin is None:
            print("无法定位 LangSegment 包。")
            return

        # 构建 __init__.py 的路径
        init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
        
        if not os.path.exists(init_path):
            print(f"未找到 LangSegment 的 __init__.py 文件于: {init_path}")
            # 尝试在 site-packages 中查找,适用于某些环境
            for site_pkg_path in site.getsitepackages():
                potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
                if os.path.exists(potential_path):
                    init_path = potential_path
                    print(f"在 site-packages 中找到 __init__.py: {init_path}")
                    break
            else: # 如果循环正常结束(没有 break)
                 print(f"在 site-packages 中也未找到 __init__.py")
                 return


        print(f"尝试读取 LangSegment __init__.py: {init_path}")
        with open(init_path, 'r') as f:
            lines = f.readlines()

        modified = False
        new_lines = []
        target_line_prefix = "from .LangSegment import"

        for line in lines:
            stripped_line = line.strip()
            if stripped_line.startswith(target_line_prefix):
                if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
                    print(f"发现需要修改的行: {stripped_line}")
                    # 移除 setLangfilters 和 getLangfilters
                    modified_line = stripped_line.replace(',setLangfilters', '')
                    modified_line = modified_line.replace(',getLangfilters', '')
                    # 确保逗号处理正确 (例如,如果它们是末尾的项)
                    modified_line = modified_line.replace('setLangfilters,', '')
                    modified_line = modified_line.replace('getLangfilters,', '')
                    # 如果它们是唯一的额外导入,移除可能多余的逗号
                    modified_line = modified_line.rstrip(',') 
                    new_lines.append(modified_line + '\n')
                    modified = True
                    print(f"修改后的行: {modified_line.strip()}")
                else:
                    new_lines.append(line) # 行没问题,保留原样
            else:
                new_lines.append(line) # 非目标行,保留原样

        if modified:
            print(f"尝试写回已修改的 LangSegment __init__.py 到: {init_path}")
            try:
                with open(init_path, 'w') as f:
                    f.writelines(new_lines)
                print("LangSegment __init__.py 修改成功。")
                # 尝试重新加载模块以使更改生效(可能无效,取决于导入链)
                try:
                    import LangSegment
                    importlib.reload(LangSegment)
                    print("LangSegment 模块已尝试重新加载。")
                except Exception as reload_e:
                     print(f"重新加载 LangSegment 时出错(可能无影响): {reload_e}")
            except PermissionError:
                print(f"错误:权限不足,无法修改 {init_path}。请考虑修改 requirements.txt。")
            except Exception as write_e:
                print(f"写入 LangSegment __init__.py 时发生其他错误: {write_e}")
        else:
            print("LangSegment __init__.py 无需修改。")

    except ImportError:
         print("未找到 LangSegment 包,无法进行修复。")
    except Exception as e:
        print(f"修复 LangSegment 包时发生意外错误: {e}")

# 在所有其他导入(尤其是可能触发 LangSegment 导入的 Amphion)之前执行修复
patch_langsegment_init()

# 克隆Amphion仓库
if not os.path.exists("Amphion"):
    subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
    os.chdir("Amphion")
else:
    if not os.getcwd().endswith("Amphion"):
        os.chdir("Amphion")

# 将Amphion加入到路径中
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
    sys.path.append(os.path.dirname(os.path.abspath("Amphion")))

# 确保需要的目录存在
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)

from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav

# 下载和设置配置文件
def setup_configs():
    config_path = "models/vc/vevo/config"
    os.makedirs(config_path, exist_ok=True)
    
    config_files = [
        "PhoneToVq8192.json",
        "Vocoder.json",
        "Vq32ToVq8192.json",
        "Vq8192ToMels.json",
        "hubert_large_l18_c32.yaml",
    ]
    
    for file in config_files:
        file_path = f"{config_path}/{file}"
        if not os.path.exists(file_path):
            try:
                file_data = hf_hub_download(
                    repo_id="amphion/Vevo", 
                    filename=f"config/{file}", 
                    repo_type="model",
                )
                os.makedirs(os.path.dirname(file_path), exist_ok=True)
                # 拷贝文件到目标位置
                subprocess.run(["cp", file_data, file_path])
            except Exception as e:
                print(f"下载配置文件 {file} 时出错: {e}")

setup_configs()

# 设备配置
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"使用设备: {device}")

# 初始化管道字典
inference_pipelines = {}

def get_pipeline(pipeline_type):
    if pipeline_type in inference_pipelines:
        return inference_pipelines[pipeline_type]
    
    # 根据需要的管道类型初始化
    if pipeline_type == "style" or pipeline_type == "voice":
        # 下载Content Tokenizer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["tokenizer/vq32/*"],
        )
        content_tokenizer_ckpt_path = os.path.join(
            local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
        )
        
        # 下载Content-Style Tokenizer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["tokenizer/vq8192/*"],
        )
        content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
        
        # 下载Autoregressive Transformer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
        )
        ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
        ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
        
        # 下载Flow Matching Transformer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
        )
        fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
        fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
        
        # 下载Vocoder
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vocoder/*"],
        )
        vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
        vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
        
        # 初始化管道
        inference_pipeline = VevoInferencePipeline(
            content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
            content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
            ar_cfg_path=ar_cfg_path,
            ar_ckpt_path=ar_ckpt_path,
            fmt_cfg_path=fmt_cfg_path,
            fmt_ckpt_path=fmt_ckpt_path,
            vocoder_cfg_path=vocoder_cfg_path,
            vocoder_ckpt_path=vocoder_ckpt_path,
            device=device,
        )
        
    elif pipeline_type == "timbre":
        # 下载Content-Style Tokenizer (仅timbre需要)
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["tokenizer/vq8192/*"],
        )
        content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
        
        # 下载Flow Matching Transformer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
        )
        fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
        fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
        
        # 下载Vocoder
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vocoder/*"],
        )
        vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
        vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
        
        # 初始化管道
        inference_pipeline = VevoInferencePipeline(
            content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
            fmt_cfg_path=fmt_cfg_path,
            fmt_ckpt_path=fmt_ckpt_path,
            vocoder_cfg_path=vocoder_cfg_path,
            vocoder_ckpt_path=vocoder_ckpt_path,
            device=device,
        )
        
    elif pipeline_type == "tts":
        # 下载Content-Style Tokenizer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["tokenizer/vq8192/*"],
        )
        content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
        
        # 下载Autoregressive Transformer (TTS特有)
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
        )
        ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
        ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
        
        # 下载Flow Matching Transformer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
        )
        fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
        fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
        
        # 下载Vocoder
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vocoder/*"],
        )
        vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
        vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
        
        # 初始化管道
        inference_pipeline = VevoInferencePipeline(
            content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
            ar_cfg_path=ar_cfg_path,
            ar_ckpt_path=ar_ckpt_path,
            fmt_cfg_path=fmt_cfg_path,
            fmt_ckpt_path=fmt_ckpt_path,
            vocoder_cfg_path=vocoder_cfg_path,
            vocoder_ckpt_path=vocoder_ckpt_path,
            device=device,
        )
    
    # 缓存管道实例
    inference_pipelines[pipeline_type] = inference_pipeline
    return inference_pipeline

# 实现VEVO功能函数
def vevo_style(content_wav, style_wav):
    temp_content_path = "wav/temp_content.wav"
    temp_style_path = "wav/temp_style.wav"
    output_path = "wav/output_vevostyle.wav"
    
    # 检查并处理音频数据
    if content_wav is None or style_wav is None:
        raise ValueError("Please upload audio files")
    
    # 处理音频格式
    if isinstance(content_wav, tuple) and len(content_wav) == 2:
        if isinstance(content_wav[0], np.ndarray):
            content_data, content_sr = content_wav
        else:
            content_sr, content_data = content_wav
        
        # 确保是单声道
        if len(content_data.shape) > 1 and content_data.shape[1] > 1:
            content_data = np.mean(content_data, axis=1)
        
        # 重采样到24kHz
        if content_sr != 24000:
            content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
            content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
            content_sr = 24000
        else:
            content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
        
        # 归一化音量
        content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
    else:
        raise ValueError("Invalid content audio format")
    
    if isinstance(style_wav[0], np.ndarray):
        style_data, style_sr = style_wav
    else:
        style_sr, style_data = style_wav

    # 确保是单声道
    if len(style_data.shape) > 1 and style_data.shape[1] > 1:
        style_data = np.mean(style_data, axis=1)

    # 重采样到24kHz
    if style_sr != 24000:
        style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
        style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
        style_sr = 24000
    else:
        style_tensor = torch.FloatTensor(style_data).unsqueeze(0)

    # 归一化音量
    style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
    
    # 打印debug信息
    print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
    print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
    
    # 保存音频
    torchaudio.save(temp_content_path, content_tensor, content_sr)
    torchaudio.save(temp_style_path, style_tensor, style_sr)
    
    try:
        # 获取管道
        pipeline = get_pipeline("style")
        
        # 推理
        gen_audio = pipeline.inference_ar_and_fm(
            src_wav_path=temp_content_path,
            src_text=None,
            style_ref_wav_path=temp_style_path,
            timbre_ref_wav_path=temp_content_path,
        )
        
        # 检查生成音频是否为数值异常
        if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
            print("Warning: Generated audio contains NaN or Inf values")
            gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
        
        print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
        
        # 保存生成的音频
        save_audio(gen_audio, output_path=output_path)
        
        return output_path
    except Exception as e:
        print(f"Error during processing: {e}")
        import traceback
        traceback.print_exc()
        raise e

def vevo_timbre(content_wav, reference_wav):
    temp_content_path = "wav/temp_content.wav"
    temp_reference_path = "wav/temp_reference.wav"
    output_path = "wav/output_vevotimbre.wav"
    
    # 检查并处理音频数据
    if content_wav is None or reference_wav is None:
        raise ValueError("Please upload audio files")
    
    # 处理内容音频格式
    if isinstance(content_wav, tuple) and len(content_wav) == 2:
        if isinstance(content_wav[0], np.ndarray):
            content_data, content_sr = content_wav
        else:
            content_sr, content_data = content_wav
        
        # 确保是单声道
        if len(content_data.shape) > 1 and content_data.shape[1] > 1:
            content_data = np.mean(content_data, axis=1)
        
        # 重采样到24kHz
        if content_sr != 24000:
            content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
            content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
            content_sr = 24000
        else:
            content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
        
        # 归一化音量
        content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
    else:
        raise ValueError("Invalid content audio format")
    
    # 处理参考音频格式
    if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
        if isinstance(reference_wav[0], np.ndarray):
            reference_data, reference_sr = reference_wav
        else:
            reference_sr, reference_data = reference_wav
        
        # 确保是单声道
        if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
            reference_data = np.mean(reference_data, axis=1)
        
        # 重采样到24kHz
        if reference_sr != 24000:
            reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
            reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
            reference_sr = 24000
        else:
            reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
        
        # 归一化音量
        reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
    else:
        raise ValueError("Invalid reference audio format")
    
    # 打印debug信息
    print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
    print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
    
    # 保存上传的音频
    torchaudio.save(temp_content_path, content_tensor, content_sr)
    torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
    
    try:
        # 获取管道
        pipeline = get_pipeline("timbre")
        
        # 推理
        gen_audio = pipeline.inference_fm(
            src_wav_path=temp_content_path,
            timbre_ref_wav_path=temp_reference_path,
            flow_matching_steps=32,
        )
        
        # 检查生成音频是否为数值异常
        if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
            print("Warning: Generated audio contains NaN or Inf values")
            gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
        
        print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
        
        # 保存生成的音频
        save_audio(gen_audio, output_path=output_path)
        
        return output_path
    except Exception as e:
        print(f"Error during processing: {e}")
        import traceback
        traceback.print_exc()
        raise e

def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
    temp_content_path = "wav/temp_content.wav"
    temp_style_path = "wav/temp_style.wav"
    temp_timbre_path = "wav/temp_timbre.wav"
    output_path = "wav/output_vevovoice.wav"
    
    # 检查并处理音频数据
    if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
        raise ValueError("Please upload all required audio files")
    
    # 处理内容音频格式
    if isinstance(content_wav, tuple) and len(content_wav) == 2:
        if isinstance(content_wav[0], np.ndarray):
            content_data, content_sr = content_wav
        else:
            content_sr, content_data = content_wav
        
        # 确保是单声道
        if len(content_data.shape) > 1 and content_data.shape[1] > 1:
            content_data = np.mean(content_data, axis=1)
        
        # 重采样到24kHz
        if content_sr != 24000:
            content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
            content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
            content_sr = 24000
        else:
            content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
        
        # 归一化音量
        content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
    else:
        raise ValueError("Invalid content audio format")
    
    # 处理风格参考音频格式
    if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
        if isinstance(style_reference_wav[0], np.ndarray):
            style_data, style_sr = style_reference_wav
        else:
            style_sr, style_data = style_reference_wav
        
        # 确保是单声道
        if len(style_data.shape) > 1 and style_data.shape[1] > 1:
            style_data = np.mean(style_data, axis=1)
        
        # 重采样到24kHz
        if style_sr != 24000:
            style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
            style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
            style_sr = 24000
        else:
            style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
        
        # 归一化音量
        style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
    else:
        raise ValueError("Invalid style reference audio format")
    
    # 处理音色参考音频格式
    if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
        if isinstance(timbre_reference_wav[0], np.ndarray):
            timbre_data, timbre_sr = timbre_reference_wav
        else:
            timbre_sr, timbre_data = timbre_reference_wav
        
        # 确保是单声道
        if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
            timbre_data = np.mean(timbre_data, axis=1)
        
        # 重采样到24kHz
        if timbre_sr != 24000:
            timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
            timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
            timbre_sr = 24000
        else:
            timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
        
        # 归一化音量
        timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
    else:
        raise ValueError("Invalid timbre reference audio format")
    
    # 打印debug信息
    print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
    print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
    print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
    
    # 保存上传的音频
    torchaudio.save(temp_content_path, content_tensor, content_sr)
    torchaudio.save(temp_style_path, style_tensor, style_sr)
    torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
    
    try:
        # 获取管道
        pipeline = get_pipeline("voice")
        
        # 推理
        gen_audio = pipeline.inference_ar_and_fm(
            src_wav_path=temp_content_path,
            src_text=None,
            style_ref_wav_path=temp_style_path,
            timbre_ref_wav_path=temp_timbre_path,
        )
        
        # 检查生成音频是否为数值异常
        if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
            print("Warning: Generated audio contains NaN or Inf values")
            gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
        
        print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
        
        # 保存生成的音频
        save_audio(gen_audio, output_path=output_path)
        
        return output_path
    except Exception as e:
        print(f"Error during processing: {e}")
        import traceback
        traceback.print_exc()
        raise e

def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_language="en", ref_language="en", style_ref_text_language="en"):
    temp_ref_path = "wav/temp_ref.wav"
    temp_timbre_path = "wav/temp_timbre.wav"
    output_path = "wav/output_vevotts.wav"
     
    # 检查并处理音频数据
    if ref_wav is None:
        raise ValueError("Please upload a reference audio file")
    
    # 处理参考音频格式
    if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
        if isinstance(ref_wav[0], np.ndarray):
            ref_data, ref_sr = ref_wav
        else:
            ref_sr, ref_data = ref_wav
        
        # 确保是单声道
        if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
            ref_data = np.mean(ref_data, axis=1)
        
        # 重采样到24kHz
        if ref_sr != 24000:
            ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
            ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
            ref_sr = 24000
        else:
            ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
        
        # 归一化音量
        ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
    else:
        raise ValueError("Invalid reference audio format")
    
    # 打印debug信息
    print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
    if style_ref_text:
        print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
    
    # 保存上传的音频
    torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
    
    if timbre_ref_wav is not None:
        if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
            if isinstance(timbre_ref_wav[0], np.ndarray):
                timbre_data, timbre_sr = timbre_ref_wav
            else:
                timbre_sr, timbre_data = timbre_ref_wav
            
            # 确保是单声道
            if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
                timbre_data = np.mean(timbre_data, axis=1)
            
            # 重采样到24kHz
            if timbre_sr != 24000:
                timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
                timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
                timbre_sr = 24000
            else:
                timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
            
            # 归一化音量
            timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
            
            print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
            torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
        else:
            raise ValueError("Invalid timbre reference audio format")
    else:
        temp_timbre_path = temp_ref_path
    
    try:
        # 获取管道
        pipeline = get_pipeline("tts")
        
        # 推理
        gen_audio = pipeline.inference_ar_and_fm(
            src_wav_path=None,
            src_text=text,
            style_ref_wav_path=temp_ref_path,
            timbre_ref_wav_path=temp_timbre_path,
            style_ref_wav_text=style_ref_text,
            src_text_language=src_language,
            style_ref_wav_text_language=style_ref_text_language,
        )
        
        # 检查生成音频是否为数值异常
        if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
            print("Warning: Generated audio contains NaN or Inf values")
            gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
        
        print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
        
        # 保存生成的音频
        save_audio(gen_audio, output_path=output_path)
        
        return output_path
    except Exception as e:
        print(f"Error during processing: {e}")
        import traceback
        traceback.print_exc()
        raise e

# 创建Gradio界面
with gr.Blocks(title="Vevo DEMO") as demo:
    gr.Markdown("# Vevo DEMO")        
    # 添加链接标签行
    with gr.Row(elem_id="links_row"):
        gr.HTML("""
        <div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
            <a href="https://arxiv.org/abs/2502.07243" target="_blank" style="text-decoration: none;">
                <img alt="arXiv Paper" src="https://img.shields.io/badge/arXiv-Paper-red">
            </a>
            <a href="https://openreview.net/pdf?id=anQDiQZhDP" target="_blank" style="text-decoration: none;">
                <img alt="ICLR Paper" src="https://img.shields.io/badge/ICLR-Paper-64b63a">
            </a>
            <a href="https://huggingface.co/amphion/Vevo" target="_blank" style="text-decoration: none;">
                <img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow">
            </a>
            <a href="https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo" target="_blank" style="text-decoration: none;">
                <img alt="GitHub Repo" src="https://img.shields.io/badge/GitHub-Repo-blue">
            </a>
        </div>
        """)

    with gr.Tab("Vevo-Timbre"):
        gr.Markdown("### Vevo-Timbre: Maintain style but transfer timbre")
        with gr.Row():
            with gr.Column():
                timbre_content = gr.Audio(label="Source Audio", type="numpy")
                timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
                timbre_button = gr.Button("Generate")
            with gr.Column():
                timbre_output = gr.Audio(label="Result")
        timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)

    with gr.Tab("Vevo-Style"):
        gr.Markdown("### Vevo-Style: Maintain timbre but transfer style (accent, emotion, etc.)")
        with gr.Row():
            with gr.Column():
                style_content = gr.Audio(label="Source Audio", type="numpy")
                style_reference = gr.Audio(label="Style Reference", type="numpy")
                style_button = gr.Button("Generate")
            with gr.Column():
                style_output = gr.Audio(label="Result")
        style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)

    with gr.Tab("Vevo-Voice"):
        gr.Markdown("### Vevo-Voice: Transfers both style and timbre with separate references")
        with gr.Row():
            with gr.Column():
                voice_content = gr.Audio(label="Source Audio", type="numpy")
                voice_style_reference = gr.Audio(label="Style Reference", type="numpy")
                voice_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
                voice_button = gr.Button("Generate")
            with gr.Column():
                voice_output = gr.Audio(label="Result")
        voice_button.click(vevo_voice, inputs=[voice_content, voice_style_reference, voice_timbre_reference], outputs=voice_output)
    
    
    
    with gr.Tab("Vevo-TTS"):
        gr.Markdown("### Vevo-TTS: Text-to-speech with separate style and timbre references")
        with gr.Row():
            with gr.Column():
                tts_text = gr.Textbox(label="Target Text", placeholder="Enter text to synthesize...", lines=3)
                tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Text Language", value="en")
                tts_reference = gr.Audio(label="Style Reference", type="numpy")                
                tts_style_ref_text = gr.Textbox(label="Style Reference Text", placeholder="Enter style reference text...", lines=3)
                tts_style_ref_text_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Style Reference Text Language", value="en")
                tts_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
                tts_button = gr.Button("Generate")
            with gr.Column():
                tts_output = gr.Audio(label="Result")
        
        tts_button.click(
            vevo_tts, 
            inputs=[tts_text, tts_reference, tts_timbre_reference, tts_style_ref_text, tts_src_language, tts_style_ref_text_language], 
            outputs=tts_output
        )
    
    gr.Markdown("""
    ## About VEVO
    VEVO is a versatile voice synthesis and conversion model that offers four main functionalities:
    1. **Vevo-Style**: Maintains timbre but transfers style (accent, emotion, etc.)
    2. **Vevo-Timbre**: Maintains style but transfers timbre
    3. **Vevo-Voice**: Transfers both style and timbre with separate references
    4. **Vevo-TTS**: Text-to-speech with separate style and timbre references
    
    For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
    """)

# 启动应用
demo.launch()