Spaces:
Build error
Build error
File size: 35,414 Bytes
c3e56e6 39c1e1e f4115c6 c3e56e6 f4115c6 b3c35e4 58ea642 677c37b 8fb2b84 28f4e7c 8fb2b84 28f4e7c 8fb2b84 28f4e7c 8fb2b84 28f4e7c 8fb2b84 28f4e7c 8fb2b84 28f4e7c 8fb2b84 39c1e1e 677c37b 39c1e1e 677c37b 39c1e1e 677c37b 39c1e1e 677c37b 39c1e1e 677c37b 39c1e1e 58ea642 f4115c6 58ea642 f4115c6 5e1a778 f4115c6 9c4257f f4115c6 9c4257f f4115c6 5e1a778 f4115c6 9c4257f f4115c6 2b148a9 f4115c6 2b148a9 f4115c6 2b148a9 f4115c6 2b148a9 f4115c6 9c4257f f4115c6 0a31a84 f4115c6 0a31a84 f4115c6 c3e56e6 f4115c6 c3e56e6 f4115c6 c3e56e6 f4115c6 4e8c834 f4115c6 4e8c834 f4115c6 4e8c834 f4115c6 d202deb f4115c6 c3e56e6 e48a9d8 4a1664c cc7434e 4a1664c e48a9d8 4a1664c e48a9d8 4a1664c cc7434e e48a9d8 7d50d8a 4a1664c 7d50d8a 4a1664c e48a9d8 cc7434e e48a9d8 4a1664c c3e56e6 e48a9d8 cc7434e e48a9d8 cc7434e e48a9d8 cc7434e e48a9d8 f4115c6 c3e56e6 29b1e08 4a1664c cc7434e 4a1664c 29b1e08 4a1664c 29b1e08 4a1664c cc7434e 29b1e08 4a1664c 29b1e08 4a1664c cc7434e 4a1664c 29b1e08 cc7434e 29b1e08 f4115c6 4a1664c f4115c6 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 c3e56e6 cc7434e f4115c6 cc7434e f4115c6 c3e56e6 29b1e08 cc7434e 4a1664c 29b1e08 4a1664c 29b1e08 4a1664c cc7434e 29b1e08 cc7434e 4a1664c cc7434e 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 cc7434e 4a1664c cc7434e 4a1664c 29b1e08 cc7434e 29b1e08 f4115c6 4a1664c cc7434e f4115c6 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 f4115c6 c65b183 f4115c6 c0b2589 29b1e08 4a1664c cc7434e 4a1664c 29b1e08 4a1664c 29b1e08 4a1664c cc7434e 4a1664c 29b1e08 cc7434e 65b6204 c65b183 29b1e08 f4115c6 4a1664c f4115c6 4a1664c 29b1e08 cc7434e 4a1664c cc7434e f4115c6 29b1e08 65b6204 29b1e08 c65b183 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 cc7434e 29b1e08 f4115c6 65b6204 47a6fb8 65b6204 fc20d9a 65b6204 aef94b3 65b6204 92e6065 65b6204 aef94b3 65b6204 aef94b3 65b6204 cc7434e f4115c6 fbb3473 cc7434e f4115c6 cc7434e fbb3473 cc7434e b4485a3 f4115c6 fbb3473 cc7434e f4115c6 cc7434e f4115c6 fbb3473 f4115c6 cc7434e b4485a3 f4115c6 aef94b3 cc7434e c5442ce c65b183 b4485a3 cc7434e f4115c6 cc7434e c3e56e6 f4115c6 eb74572 f4115c6 cc7434e b4485a3 cc7434e f4115c6 c3e56e6 f4115c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
def install_espeak():
"""检测并安装espeak-ng依赖"""
try:
# 检查espeak-ng是否已安装
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("检测到系统中未安装espeak-ng,正在尝试安装...")
# 尝试使用apt-get安装espeak-ng及其数据
subprocess.run(["apt-get", "update"], check=True)
# 安装 espeak-ng 和对应的语言数据包
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
print("espeak-ng及其数据包安装成功!")
else:
print("espeak-ng已安装在系统中。")
# 即使已安装,也尝试更新数据确保完整性 (可选,但有时有帮助)
# print("尝试更新 espeak-ng 数据...")
# subprocess.run(["apt-get", "update"], check=True)
# subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)
# 验证中文支持 (可选)
try:
voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
if "cmn" in voices_result.stdout:
print("espeak-ng 支持 'cmn' 语言。")
else:
print("警告:espeak-ng 安装了,但 'cmn' 语言似乎仍不可用。")
except Exception as e:
print(f"验证 espeak-ng 中文支持时出错(可能不影响功能): {e}")
except Exception as e:
print(f"安装espeak-ng时出错: {e}")
print("请尝试手动运行: apt-get update && apt-get install -y espeak-ng espeak-ng-data")
# 在所有其他操作之前安装espeak
install_espeak()
def patch_langsegment_init():
try:
# 尝试找到 LangSegment 包的位置
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None:
print("无法定位 LangSegment 包。")
return
# 构建 __init__.py 的路径
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
if not os.path.exists(init_path):
print(f"未找到 LangSegment 的 __init__.py 文件于: {init_path}")
# 尝试在 site-packages 中查找,适用于某些环境
for site_pkg_path in site.getsitepackages():
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
if os.path.exists(potential_path):
init_path = potential_path
print(f"在 site-packages 中找到 __init__.py: {init_path}")
break
else: # 如果循环正常结束(没有 break)
print(f"在 site-packages 中也未找到 __init__.py")
return
print(f"尝试读取 LangSegment __init__.py: {init_path}")
with open(init_path, 'r') as f:
lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
stripped_line = line.strip()
if stripped_line.startswith(target_line_prefix):
if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
print(f"发现需要修改的行: {stripped_line}")
# 移除 setLangfilters 和 getLangfilters
modified_line = stripped_line.replace(',setLangfilters', '')
modified_line = modified_line.replace(',getLangfilters', '')
# 确保逗号处理正确 (例如,如果它们是末尾的项)
modified_line = modified_line.replace('setLangfilters,', '')
modified_line = modified_line.replace('getLangfilters,', '')
# 如果它们是唯一的额外导入,移除可能多余的逗号
modified_line = modified_line.rstrip(',')
new_lines.append(modified_line + '\n')
modified = True
print(f"修改后的行: {modified_line.strip()}")
else:
new_lines.append(line) # 行没问题,保留原样
else:
new_lines.append(line) # 非目标行,保留原样
if modified:
print(f"尝试写回已修改的 LangSegment __init__.py 到: {init_path}")
try:
with open(init_path, 'w') as f:
f.writelines(new_lines)
print("LangSegment __init__.py 修改成功。")
# 尝试重新加载模块以使更改生效(可能无效,取决于导入链)
try:
import LangSegment
importlib.reload(LangSegment)
print("LangSegment 模块已尝试重新加载。")
except Exception as reload_e:
print(f"重新加载 LangSegment 时出错(可能无影响): {reload_e}")
except PermissionError:
print(f"错误:权限不足,无法修改 {init_path}。请考虑修改 requirements.txt。")
except Exception as write_e:
print(f"写入 LangSegment __init__.py 时发生其他错误: {write_e}")
else:
print("LangSegment __init__.py 无需修改。")
except ImportError:
print("未找到 LangSegment 包,无法进行修复。")
except Exception as e:
print(f"修复 LangSegment 包时发生意外错误: {e}")
# 在所有其他导入(尤其是可能触发 LangSegment 导入的 Amphion)之前执行修复
patch_langsegment_init()
# 克隆Amphion仓库
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
else:
if not os.getcwd().endswith("Amphion"):
os.chdir("Amphion")
# 将Amphion加入到路径中
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
# 确保需要的目录存在
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
# 下载和设置配置文件
def setup_configs():
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = [
"PhoneToVq8192.json",
"Vocoder.json",
"Vq32ToVq8192.json",
"Vq8192ToMels.json",
"hubert_large_l18_c32.yaml",
]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(
repo_id="amphion/Vevo",
filename=f"config/{file}",
repo_type="model",
)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# 拷贝文件到目标位置
subprocess.run(["cp", file_data, file_path])
except Exception as e:
print(f"下载配置文件 {file} 时出错: {e}")
setup_configs()
# 设备配置
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"使用设备: {device}")
# 初始化管道字典
inference_pipelines = {}
def get_pipeline(pipeline_type):
if pipeline_type in inference_pipelines:
return inference_pipelines[pipeline_type]
# 根据需要的管道类型初始化
if pipeline_type == "style" or pipeline_type == "voice":
# 下载Content Tokenizer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq32/*"],
)
content_tokenizer_ckpt_path = os.path.join(
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
# 下载Content-Style Tokenizer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 下载Autoregressive Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
# 下载Flow Matching Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 下载Vocoder
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 初始化管道
inference_pipeline = VevoInferencePipeline(
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "timbre":
# 下载Content-Style Tokenizer (仅timbre需要)
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 下载Flow Matching Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 下载Vocoder
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 初始化管道
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "tts":
# 下载Content-Style Tokenizer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 下载Autoregressive Transformer (TTS特有)
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
# 下载Flow Matching Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 下载Vocoder
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 初始化管道
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
# 缓存管道实例
inference_pipelines[pipeline_type] = inference_pipeline
return inference_pipeline
# 实现VEVO功能函数
def vevo_style(content_wav, style_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
output_path = "wav/output_vevostyle.wav"
# 检查并处理音频数据
if content_wav is None or style_wav is None:
raise ValueError("Please upload audio files")
# 处理音频格式
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# 确保是单声道
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# 重采样到24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# 归一化音量
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
if isinstance(style_wav[0], np.ndarray):
style_data, style_sr = style_wav
else:
style_sr, style_data = style_wav
# 确保是单声道
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
style_data = np.mean(style_data, axis=1)
# 重采样到24kHz
if style_sr != 24000:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
style_sr = 24000
else:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
# 归一化音量
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
# 打印debug信息
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
# 保存音频
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
try:
# 获取管道
pipeline = get_pipeline("style")
# 推理
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_content_path,
)
# 检查生成音频是否为数值异常
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# 保存生成的音频
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
def vevo_timbre(content_wav, reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_reference_path = "wav/temp_reference.wav"
output_path = "wav/output_vevotimbre.wav"
# 检查并处理音频数据
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
# 处理内容音频格式
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# 确保是单声道
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# 重采样到24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# 归一化音量
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
# 处理参考音频格式
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
if isinstance(reference_wav[0], np.ndarray):
reference_data, reference_sr = reference_wav
else:
reference_sr, reference_data = reference_wav
# 确保是单声道
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
reference_data = np.mean(reference_data, axis=1)
# 重采样到24kHz
if reference_sr != 24000:
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
reference_sr = 24000
else:
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
# 归一化音量
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid reference audio format")
# 打印debug信息
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
# 保存上传的音频
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
try:
# 获取管道
pipeline = get_pipeline("timbre")
# 推理
gen_audio = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=32,
)
# 检查生成音频是否为数值异常
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# 保存生成的音频
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevovoice.wav"
# 检查并处理音频数据
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
raise ValueError("Please upload all required audio files")
# 处理内容音频格式
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# 确保是单声道
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# 重采样到24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# 归一化音量
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
# 处理风格参考音频格式
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
if isinstance(style_reference_wav[0], np.ndarray):
style_data, style_sr = style_reference_wav
else:
style_sr, style_data = style_reference_wav
# 确保是单声道
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
style_data = np.mean(style_data, axis=1)
# 重采样到24kHz
if style_sr != 24000:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
style_sr = 24000
else:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
# 归一化音量
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid style reference audio format")
# 处理音色参考音频格式
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
if isinstance(timbre_reference_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_reference_wav
else:
timbre_sr, timbre_data = timbre_reference_wav
# 确保是单声道
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
timbre_data = np.mean(timbre_data, axis=1)
# 重采样到24kHz
if timbre_sr != 24000:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
timbre_sr = 24000
else:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
# 归一化音量
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid timbre reference audio format")
# 打印debug信息
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
# 保存上传的音频
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
try:
# 获取管道
pipeline = get_pipeline("voice")
# 推理
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_timbre_path,
)
# 检查生成音频是否为数值异常
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# 保存生成的音频
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_language="en", ref_language="en", style_ref_text_language="en"):
temp_ref_path = "wav/temp_ref.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevotts.wav"
# 检查并处理音频数据
if ref_wav is None:
raise ValueError("Please upload a reference audio file")
# 处理参考音频格式
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
if isinstance(ref_wav[0], np.ndarray):
ref_data, ref_sr = ref_wav
else:
ref_sr, ref_data = ref_wav
# 确保是单声道
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
ref_data = np.mean(ref_data, axis=1)
# 重采样到24kHz
if ref_sr != 24000:
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
ref_sr = 24000
else:
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
# 归一化音量
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid reference audio format")
# 打印debug信息
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
if style_ref_text:
print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
# 保存上传的音频
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
if timbre_ref_wav is not None:
if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
if isinstance(timbre_ref_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_ref_wav
else:
timbre_sr, timbre_data = timbre_ref_wav
# 确保是单声道
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
timbre_data = np.mean(timbre_data, axis=1)
# 重采样到24kHz
if timbre_sr != 24000:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
timbre_sr = 24000
else:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
# 归一化音量
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
else:
raise ValueError("Invalid timbre reference audio format")
else:
temp_timbre_path = temp_ref_path
try:
# 获取管道
pipeline = get_pipeline("tts")
# 推理
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=None,
src_text=text,
style_ref_wav_path=temp_ref_path,
timbre_ref_wav_path=temp_timbre_path,
style_ref_wav_text=style_ref_text,
src_text_language=src_language,
style_ref_wav_text_language=style_ref_text_language,
)
# 检查生成音频是否为数值异常
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# 保存生成的音频
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
# 创建Gradio界面
with gr.Blocks(title="Vevo DEMO") as demo:
gr.Markdown("# Vevo DEMO")
# 添加链接标签行
with gr.Row(elem_id="links_row"):
gr.HTML("""
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
<a href="https://arxiv.org/abs/2502.07243" target="_blank" style="text-decoration: none;">
<img alt="arXiv Paper" src="https://img.shields.io/badge/arXiv-Paper-red">
</a>
<a href="https://openreview.net/pdf?id=anQDiQZhDP" target="_blank" style="text-decoration: none;">
<img alt="ICLR Paper" src="https://img.shields.io/badge/ICLR-Paper-64b63a">
</a>
<a href="https://huggingface.co/amphion/Vevo" target="_blank" style="text-decoration: none;">
<img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow">
</a>
<a href="https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo" target="_blank" style="text-decoration: none;">
<img alt="GitHub Repo" src="https://img.shields.io/badge/GitHub-Repo-blue">
</a>
</div>
""")
with gr.Tab("Vevo-Timbre"):
gr.Markdown("### Vevo-Timbre: Maintain style but transfer timbre")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio", type="numpy")
timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
timbre_button = gr.Button("Generate")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
with gr.Tab("Vevo-Style"):
gr.Markdown("### Vevo-Style: Maintain timbre but transfer style (accent, emotion, etc.)")
with gr.Row():
with gr.Column():
style_content = gr.Audio(label="Source Audio", type="numpy")
style_reference = gr.Audio(label="Style Reference", type="numpy")
style_button = gr.Button("Generate")
with gr.Column():
style_output = gr.Audio(label="Result")
style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)
with gr.Tab("Vevo-Voice"):
gr.Markdown("### Vevo-Voice: Transfers both style and timbre with separate references")
with gr.Row():
with gr.Column():
voice_content = gr.Audio(label="Source Audio", type="numpy")
voice_style_reference = gr.Audio(label="Style Reference", type="numpy")
voice_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
voice_button = gr.Button("Generate")
with gr.Column():
voice_output = gr.Audio(label="Result")
voice_button.click(vevo_voice, inputs=[voice_content, voice_style_reference, voice_timbre_reference], outputs=voice_output)
with gr.Tab("Vevo-TTS"):
gr.Markdown("### Vevo-TTS: Text-to-speech with separate style and timbre references")
with gr.Row():
with gr.Column():
tts_text = gr.Textbox(label="Target Text", placeholder="Enter text to synthesize...", lines=3)
tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Text Language", value="en")
tts_reference = gr.Audio(label="Style Reference", type="numpy")
tts_style_ref_text = gr.Textbox(label="Style Reference Text", placeholder="Enter style reference text...", lines=3)
tts_style_ref_text_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Style Reference Text Language", value="en")
tts_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
tts_button = gr.Button("Generate")
with gr.Column():
tts_output = gr.Audio(label="Result")
tts_button.click(
vevo_tts,
inputs=[tts_text, tts_reference, tts_timbre_reference, tts_style_ref_text, tts_src_language, tts_style_ref_text_language],
outputs=tts_output
)
gr.Markdown("""
## About VEVO
VEVO is a versatile voice synthesis and conversion model that offers four main functionalities:
1. **Vevo-Style**: Maintains timbre but transfers style (accent, emotion, etc.)
2. **Vevo-Timbre**: Maintains style but transfers timbre
3. **Vevo-Voice**: Transfers both style and timbre with separate references
4. **Vevo-TTS**: Text-to-speech with separate style and timbre references
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
""")
# 启动应用
demo.launch() |