Spaces:
Running
on
Zero
Running
on
Zero
""" | |
File: app.py | |
Description: Chat with the vision language model Gemma3. | |
Author: Didier Guillevic | |
Date: 2025-03-16 | |
""" | |
import spaces | |
from huggingface_hub import login, whoami | |
import os | |
token = os.getenv('HF_TOKEN') | |
login(token=token) | |
import gradio as gr | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration | |
from transformers import TextIteratorStreamer | |
from threading import Thread | |
import torch | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_id = "google/gemma-3-4b-it" | |
processor = AutoProcessor.from_pretrained(model_id, use_fast=True, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16 | |
).to(device).eval() | |
def process(message, history): | |
"""Generate the model response in streaming mode given message and history | |
""" | |
print(f"{history=}") | |
# Get the user's text and list of images | |
user_text = message.get("text", "") | |
user_images = message.get("files", []) # List of images | |
# Build the message list including history | |
messages = [] | |
combined_user_input = [] # Combine images and text if found in same turn. | |
for user_turn, bot_turn in history: | |
if isinstance(user_turn, tuple): # Image input | |
image_content = [{"type": "image", "url": image_url} for image_url in user_turn] | |
combined_user_input.extend(image_content) | |
elif isinstance(user_turn, str): # Text input | |
combined_user_input.append({"type":"text", "text": user_turn}) | |
if combined_user_input and bot_turn: | |
messages.append({'role': 'user', 'content': combined_user_input}) | |
messages.append({'role': 'assistant', 'content': [{"type": "text", "text": bot_turn}]}) | |
combined_user_input = [] # reset the combined user input. | |
# Build the user message's content from the provided message | |
user_content = [] | |
if user_text: | |
user_content.append({"type": "text", "text": user_text}) | |
for image in user_images: | |
user_content.append({"type": "image", "url": image}) | |
messages.append({'role': 'user', 'content': user_content}) | |
# Generate model's response | |
inputs = processor.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=True, | |
return_dict=True, return_tensors="pt" | |
).to(model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer( | |
processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=1_024, | |
do_sample=False | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
partial_message = "" | |
for new_text in streamer: | |
partial_message += new_text | |
yield partial_message | |
# | |
# User interface | |
# | |
with gr.Blocks() as demo: | |
chat_interface = gr.ChatInterface( | |
fn=process, | |
title="Multimedia Chat", | |
description="Chat with text or text+image.", | |
multimodal=True, | |
examples=[ | |
"How can we rationalize quantum entanglement?", | |
"Peux-tu expliquer le terme 'quantum spin'?", | |
{'files': ['./sample_ID.jpeg',], 'text': 'Describe this image in a few words.'}, | |
{ | |
'files': ['./sample_ID.jpeg',], | |
'text': ( | |
'Could you extract the information present in the image ' | |
'and present it as a bulleted list?') | |
}, | |
] | |
) | |
demo.launch() | |