import argparse import util from collections import defaultdict import pandas as pd def get_domain(x): for domain in ["chest_xray", "mri", "histology", "gross", "ct_scan"]: in_domain = x["domain"][domain] if in_domain: return domain def main(args): scores_data = util.load_file_jsonl(args.scores_file) predictions = [ (x["question_id"], x["type"], get_domain(x), x["gpt_eval"].split("\n")[0].split(" ")) for x in scores_data ] score_type_dict = defaultdict(lambda: defaultdict(list)) for q_id, q_type, domain, (a1_score, a2_score) in predictions: score_type_dict[q_type][1].append(a1_score) score_type_dict[q_type][2].append(a2_score) score_type_dict["overall"][1].append(a1_score) score_type_dict["overall"][2].append(a2_score) score_type_dict[domain][1].append(a1_score) score_type_dict[domain][2].append(a2_score) result = defaultdict(dict) for q_type, score_dict in score_type_dict.items(): result[q_type]["gpt4_score"] = util.get_avg(score_dict[1]) result[q_type]["pred_score"] = util.get_avg(score_dict[2]) result[q_type]["pred_relative_score"] = ( util.get_avg([float(s2) / float(s1) for s1, s2 in zip(score_dict[1], score_dict[2])]) * 100 ) result[q_type]["data_size"] = len(score_dict[1]) df = pd.DataFrame.from_dict(result).filter( [ "conversation", "detailed_description", "chest_xray", "mri", "histology", "gross", "ct_scan", "overall", ] ) print(df) if __name__ == "__main__": parser = argparse.ArgumentParser("GPT-4 Multimodal Chat Eval Postprocessing", add_help=True) parser.add_argument( "--scores-file", default="", metavar="FILE", help="input path to gpt-4 score file" ) args = parser.parse_args() main(args)