File size: 5,067 Bytes
cb3a670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
import torch

from medrax.llava.constants import (
    IMAGE_TOKEN_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
)
from medrax.llava.conversation import conv_templates, SeparatorStyle
from medrax.llava.model.builder import load_pretrained_model
from medrax.llava.utils import disable_torch_init
from medrax.llava.mm_utils import (
    process_images,
    tokenizer_image_token,
    get_model_name_from_path,
    KeywordsStoppingCriteria,
)

from PIL import Image

import requests
from io import BytesIO
from transformers import TextStreamer


def load_image(image_file):
    if image_file.startswith("http://") or image_file.startswith("https://"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


def main(args):
    # Model
    disable_torch_init()

    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(
        args.model_path,
        args.model_base,
        model_name,
        args.load_8bit,
        args.load_4bit,
        device=args.device,
    )

    if "llama-2" in model_name.lower():
        conv_mode = "llava_llama_2"
    elif "v1" in model_name.lower():
        conv_mode = "llava_v1"
    elif "mpt" in model_name.lower():
        conv_mode = "mpt"
    else:
        conv_mode = "llava_v0"
    conv_mode = "mistral_instruct"

    if args.conv_mode is not None and conv_mode != args.conv_mode:
        print(
            "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
                conv_mode, args.conv_mode, args.conv_mode
            )
        )
    else:
        args.conv_mode = conv_mode

    conv = conv_templates[args.conv_mode].copy()
    if "mpt" in model_name.lower():
        roles = ("user", "assistant")
    else:
        roles = conv.roles

    image = load_image(args.image_file)
    # Similar operation in model_worker.py
    image_tensor = process_images([image], image_processor, model.config)
    if type(image_tensor) is list:
        image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
    else:
        image_tensor = image_tensor.to(model.device, dtype=torch.float16)

    while True:
        try:
            inp = input(f"{roles[0]}: ")
        except EOFError:
            inp = ""
        if not inp:
            print("exit...")
            break

        print(f"{roles[1]}: ", end="")

        if image is not None:
            # first message
            if model.config.mm_use_im_start_end:
                inp = (
                    DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + "\n" + inp
                )
            else:
                inp = DEFAULT_IMAGE_TOKEN + "\n" + inp
            conv.append_message(conv.roles[0], inp)
            image = None
        else:
            # later messages
            conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = (
            tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
            .unsqueeze(0)
            .to(model.device)
        )
        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor,
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=args.max_new_tokens,
                streamer=streamer,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
            )

        outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip()
        conv.messages[-1][-1] = outputs

        if args.debug:
            print("\n", {"prompt": prompt, "outputs": outputs}, "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-file", type=str, required=True)
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--conv-mode", type=str, default=None)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--max-new-tokens", type=int, default=512)
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    parser.add_argument("--debug", action="store_true")
    args = parser.parse_args()
    main(args)