Upload 10 files
Browse files- app.py +574 -0
- data/iris_synthetic_data.csv +3001 -0
- data/sample.csv +152 -0
- experiments/logs/test.txt.txt +0 -0
- requirements.txt +0 -0
- utils/file_utils.py +14 -0
- utils/logger.py +48 -0
- utils/preprocessing.py +45 -0
- utils/split.py +6 -0
- utils/training.py +74 -0
app.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from utils.logger import create_log_entry, log_experiment_results
|
6 |
+
from utils.file_utils import load_csv, preview_dataframe, get_column_names
|
7 |
+
from utils.training import train_models
|
8 |
+
from utils.preprocessing import preprocess_data
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
11 |
+
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, ParameterGrid, train_test_split
|
12 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
13 |
+
import numpy as np
|
14 |
+
from utils.training import get_model_instance
|
15 |
+
try:
|
16 |
+
from skopt import BayesSearchCV
|
17 |
+
bayes_available = True
|
18 |
+
except ImportError:
|
19 |
+
bayes_available = False
|
20 |
+
|
21 |
+
|
22 |
+
session = {
|
23 |
+
"raw_df": None,
|
24 |
+
"df": None,
|
25 |
+
"features": [],
|
26 |
+
"target": None,
|
27 |
+
"columns": [],
|
28 |
+
"missing_strategy": "drop",
|
29 |
+
"transformation_text": ""
|
30 |
+
}
|
31 |
+
# ---------------------------
|
32 |
+
# Dahsboard
|
33 |
+
# ---------------------------
|
34 |
+
|
35 |
+
# ---------------------------
|
36 |
+
# Step 1: File Upload Handler
|
37 |
+
# ---------------------------
|
38 |
+
def handle_upload(file):
|
39 |
+
if file is None:
|
40 |
+
return "No file uploaded", None, gr.update(choices=[]), gr.update(choices=[])
|
41 |
+
try:
|
42 |
+
df, err = load_csv(file.name)
|
43 |
+
session["uploaded_filename"] = file.name
|
44 |
+
if err:
|
45 |
+
return f"Error: {err}", None, gr.update(choices=[]), gr.update(choices=[])
|
46 |
+
session["raw_df"] = df.copy()
|
47 |
+
session["df"] = df.copy() # Initialize processed df as raw df
|
48 |
+
columns = get_column_names(df)
|
49 |
+
session["columns"] = columns
|
50 |
+
return (
|
51 |
+
"File uploaded successfully!",
|
52 |
+
preview_dataframe(df),
|
53 |
+
gr.update(choices=columns, value=[]),
|
54 |
+
gr.update(choices=columns, value=None)
|
55 |
+
)
|
56 |
+
except Exception as e:
|
57 |
+
return f"Error: {e}", None, gr.update(choices=[]), gr.update(choices=[])
|
58 |
+
|
59 |
+
# ---------------------------
|
60 |
+
# Step 2: Global Missing Value Strategy
|
61 |
+
# ---------------------------
|
62 |
+
|
63 |
+
|
64 |
+
def save_missing_strategy(missing_strategy):
|
65 |
+
raw_df = session.get("raw_df")
|
66 |
+
target_col = session.get("target", "")
|
67 |
+
if raw_df is None:
|
68 |
+
return "No data available", None
|
69 |
+
processed_df = preprocess_data(raw_df.copy(), target_col=target_col, missing_strategy=missing_strategy, transformation_map={})
|
70 |
+
session["df"] = processed_df
|
71 |
+
session["missing_strategy"] = missing_strategy # Store in session
|
72 |
+
return f"Missing value strategy '{missing_strategy}' applied", preview_dataframe(processed_df)
|
73 |
+
|
74 |
+
|
75 |
+
# ---------------------------
|
76 |
+
# Step 3: Save Features and Target Selection (Filter DataFrame)
|
77 |
+
# ---------------------------
|
78 |
+
def save_feature_target_selection(features, target):
|
79 |
+
if session.get("df") is None:
|
80 |
+
return "No data available", "", None
|
81 |
+
session["features"] = features
|
82 |
+
session["target"] = target
|
83 |
+
selected_cols = features.copy()
|
84 |
+
if target and target not in selected_cols:
|
85 |
+
selected_cols.append(target)
|
86 |
+
filtered_df = session["df"][selected_cols]
|
87 |
+
session["df"] = filtered_df
|
88 |
+
default_trans = ", ".join(["No Transformation"] * len(features)) if features else ""
|
89 |
+
return f"Selected {len(features)} features and target: {target}", default_trans, preview_dataframe(filtered_df)
|
90 |
+
|
91 |
+
# ---------------------------
|
92 |
+
# Step 4: Save Transformation Options
|
93 |
+
# ---------------------------
|
94 |
+
def save_transformation_options(transformation_text):
|
95 |
+
if session.get("df") is None or not session.get("features"):
|
96 |
+
return "No data or features available", None
|
97 |
+
trans_list = [t.strip() for t in transformation_text.split(",")] if transformation_text.strip() != "" else []
|
98 |
+
if len(trans_list) < len(session["features"]):
|
99 |
+
trans_list += ["No Transformation"] * (len(session["features"]) - len(trans_list))
|
100 |
+
transformation_mapping = {session["features"][i]: trans_list[i] for i in range(len(session["features"]))}
|
101 |
+
df = session.get("df").copy()
|
102 |
+
def apply_transformations(df, transformation_map):
|
103 |
+
for col, transform in transformation_map.items():
|
104 |
+
if transform == "Label Encode":
|
105 |
+
if df[col].dtype == "object" or str(df[col].dtype).startswith("category"):
|
106 |
+
df[col] = LabelEncoder().fit_transform(df[col])
|
107 |
+
else:
|
108 |
+
df[col] = LabelEncoder().fit_transform(df[col].astype(str))
|
109 |
+
elif transform == "Normalize":
|
110 |
+
scaler = StandardScaler()
|
111 |
+
df[[col]] = scaler.fit_transform(df[[col]])
|
112 |
+
return df
|
113 |
+
processed_df = apply_transformations(df, transformation_mapping)
|
114 |
+
session["df"] = processed_df
|
115 |
+
session["transformation_text"] = transformation_text # Store in session
|
116 |
+
return "Transformation options applied", preview_dataframe(processed_df)
|
117 |
+
|
118 |
+
# ---------------------------
|
119 |
+
# Model Training Function
|
120 |
+
# ---------------------------
|
121 |
+
def train_selected_models(experiment_title, selected_models, lr_c, lr_max_iter, dt_max_depth, dt_min_samples_split,
|
122 |
+
rf_n_estimators, rf_max_depth, svm_c, svm_kernel, nb_var_smoothing,
|
123 |
+
train_size):
|
124 |
+
df = session.get("df")
|
125 |
+
features = session.get("features")
|
126 |
+
target = session.get("target")
|
127 |
+
missing_strategy = session.get("missing_strategy", "drop")
|
128 |
+
transformation_text = session.get("transformation_text", "")
|
129 |
+
if df is None or not features or target is None or not selected_models:
|
130 |
+
return "Please ensure data is uploaded, features/target selected, and models chosen."
|
131 |
+
trans_list = [t.strip() for t in transformation_text.split(",")] if transformation_text.strip() != "" else []
|
132 |
+
if len(trans_list) < len(features):
|
133 |
+
trans_list += ["No Transformation"] * (len(features) - len(trans_list))
|
134 |
+
transformation_mapping = {features[i]: trans_list[i] for i in range(len(features))}
|
135 |
+
preprocessing_steps = [f"Missing Value: {missing_strategy}"] + [f"{k}: {v}" for k, v in transformation_mapping.items()]
|
136 |
+
test_size = 1 - train_size
|
137 |
+
if not set(features).issubset(df.columns):
|
138 |
+
return "Selected features not found in the processed data."
|
139 |
+
X = df[features]
|
140 |
+
y = df[target]
|
141 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
|
142 |
+
model_params = {
|
143 |
+
"Logistic Regression": {"C": lr_c, "max_iter": lr_max_iter},
|
144 |
+
"Decision Tree": {"max_depth": dt_max_depth, "min_samples_split": dt_min_samples_split},
|
145 |
+
"Random Forest": {"n_estimators": rf_n_estimators, "max_depth": rf_max_depth},
|
146 |
+
"SVM": {"C": svm_c, "kernel": svm_kernel},
|
147 |
+
"Naive Bayes": {"var_smoothing": nb_var_smoothing}
|
148 |
+
}
|
149 |
+
training_logs = train_models(X_train, X_test, y_train, y_test, selected_models, model_params, preprocessing_steps)
|
150 |
+
session["trained_models"] = {model: training_logs[model]["model"] for model in selected_models}
|
151 |
+
session["X_test"] = X_test
|
152 |
+
session["y_test"] = y_test
|
153 |
+
experiment_logs = []
|
154 |
+
for model_name in selected_models:
|
155 |
+
entry = create_log_entry(
|
156 |
+
experiment_title,
|
157 |
+
model_name,
|
158 |
+
model_params[model_name],
|
159 |
+
"",
|
160 |
+
preprocessing_steps,
|
161 |
+
training_logs[model_name]["metrics"],
|
162 |
+
training_logs[model_name].get("training_time", 0),
|
163 |
+
training_logs[model_name]["model"]
|
164 |
+
)
|
165 |
+
experiment_logs.append(entry)
|
166 |
+
log_experiment_results(experiment_logs)
|
167 |
+
formatted_results = "\n".join([f"{model}: {training_logs[model]['metrics']}" for model in selected_models])
|
168 |
+
return formatted_results
|
169 |
+
|
170 |
+
# ---------------------------
|
171 |
+
# Hyperparameter Tuning Function (Grid Search Example)
|
172 |
+
# ---------------------------
|
173 |
+
def run_hyperparameter_tuning(experiment_title, selected_models):
|
174 |
+
df = session.get("df")
|
175 |
+
features = session.get("features")
|
176 |
+
target = session.get("target")
|
177 |
+
|
178 |
+
if df is None or not features or target is None or not selected_models:
|
179 |
+
return "Please ensure data is uploaded, features/target selected, and models chosen.", None
|
180 |
+
|
181 |
+
X = df[features]
|
182 |
+
y = df[target]
|
183 |
+
|
184 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
185 |
+
|
186 |
+
strategy_map = {
|
187 |
+
"Grid Search": GridSearchCV,
|
188 |
+
"Random Search": RandomizedSearchCV
|
189 |
+
}
|
190 |
+
if bayes_available:
|
191 |
+
from skopt import BayesSearchCV
|
192 |
+
strategy_map["Bayesian Optimization"] = BayesSearchCV
|
193 |
+
|
194 |
+
param_grids = {
|
195 |
+
"Logistic Regression": {"C": [0.01, 0.1, 1, 10], "max_iter": [100, 200, 300]},
|
196 |
+
"Decision Tree": {"max_depth": [3, 5, 10, None], "min_samples_split": [2, 5, 10]},
|
197 |
+
"Random Forest": {"n_estimators": [50, 100, 200], "max_depth": [None, 10, 20]},
|
198 |
+
"SVM": {"C": [0.1, 1, 10], "kernel": ["linear", "rbf"]},
|
199 |
+
"Naive Bayes": {"var_smoothing": np.logspace(-10, -8, 5)}
|
200 |
+
}
|
201 |
+
|
202 |
+
all_logs = []
|
203 |
+
status_texts = []
|
204 |
+
|
205 |
+
for model_name in selected_models:
|
206 |
+
best_overall_score = -1
|
207 |
+
best_overall_summary = None
|
208 |
+
|
209 |
+
for strategy_name, strategy_cls in strategy_map.items():
|
210 |
+
try:
|
211 |
+
model = get_model_instance(model_name, {})
|
212 |
+
|
213 |
+
if strategy_name == "Grid Search":
|
214 |
+
searcher = strategy_cls(
|
215 |
+
model,
|
216 |
+
param_grid=param_grids[model_name],
|
217 |
+
scoring="accuracy",
|
218 |
+
cv=5
|
219 |
+
)
|
220 |
+
elif strategy_name == "Random Search":
|
221 |
+
searcher = strategy_cls(
|
222 |
+
model,
|
223 |
+
param_distributions=param_grids[model_name],
|
224 |
+
scoring="accuracy",
|
225 |
+
cv=5,
|
226 |
+
n_iter=min(10, len(list(ParameterGrid(param_grids[model_name]))))
|
227 |
+
)
|
228 |
+
elif strategy_name == "Bayesian Optimization":
|
229 |
+
searcher = strategy_cls(
|
230 |
+
model,
|
231 |
+
search_spaces=param_grids[model_name],
|
232 |
+
scoring="accuracy",
|
233 |
+
cv=5,
|
234 |
+
n_iter=10
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
continue
|
238 |
+
|
239 |
+
searcher.fit(X_train, y_train)
|
240 |
+
best_estimator = searcher.best_estimator_
|
241 |
+
best_params = searcher.best_params_
|
242 |
+
|
243 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
244 |
+
|
245 |
+
y_train_pred = best_estimator.predict(X_train)
|
246 |
+
y_test_pred = best_estimator.predict(X_test)
|
247 |
+
|
248 |
+
metrics = {
|
249 |
+
"accuracy_train": accuracy_score(y_train, y_train_pred),
|
250 |
+
"accuracy_test": accuracy_score(y_test, y_test_pred),
|
251 |
+
"precision_train": precision_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
252 |
+
"precision_test": precision_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
253 |
+
"recall_train": recall_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
254 |
+
"recall_test": recall_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
255 |
+
"f1_score_train": f1_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
256 |
+
"f1_score_test": f1_score(y_test, y_test_pred, average='weighted', zero_division=0)
|
257 |
+
}
|
258 |
+
|
259 |
+
log_entry = create_log_entry(
|
260 |
+
experiment_title,
|
261 |
+
f"Hyperparameter Tuned {model_name} ({strategy_name})",
|
262 |
+
best_params,
|
263 |
+
"",
|
264 |
+
[f"Strategy: {strategy_name}"],
|
265 |
+
metrics,
|
266 |
+
0,
|
267 |
+
best_estimator
|
268 |
+
)
|
269 |
+
all_logs.append(log_entry)
|
270 |
+
|
271 |
+
if searcher.best_score_ > best_overall_score:
|
272 |
+
best_overall_score = searcher.best_score_
|
273 |
+
best_overall_summary = f"{model_name} ({strategy_name}):\n" + "\n".join(
|
274 |
+
[f"{k}: {v:.4f}" for k, v in metrics.items()]
|
275 |
+
)
|
276 |
+
|
277 |
+
except Exception as e:
|
278 |
+
continue
|
279 |
+
|
280 |
+
if best_overall_summary:
|
281 |
+
status_texts.append(best_overall_summary)
|
282 |
+
else:
|
283 |
+
status_texts.append(f"{model_name}: All tuning strategies failed.")
|
284 |
+
|
285 |
+
log_experiment_results(all_logs)
|
286 |
+
return "\n\n".join(status_texts), "Tuning complete!"
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
###--------------------dahsboard
|
292 |
+
|
293 |
+
|
294 |
+
###--------------------dahsboard
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
# ---------------------------
|
300 |
+
# Gradio Interface Layout
|
301 |
+
# ---------------------------
|
302 |
+
with gr.Blocks() as demo:
|
303 |
+
gr.Markdown("## ML Model Builder")
|
304 |
+
|
305 |
+
with gr.Tab("Data Upload & Preprocessing"):
|
306 |
+
# Step 1: File Upload
|
307 |
+
gr.Markdown("### Step 1: Upload File")
|
308 |
+
with gr.Row():
|
309 |
+
file_input = gr.File(label="Upload CSV File", file_types=[".csv"])
|
310 |
+
upload_status = gr.Textbox(label="Upload Status", interactive=False)
|
311 |
+
df_preview = gr.Dataframe(label="Raw Data Preview", interactive=False)
|
312 |
+
|
313 |
+
# Step 2: Global Missing Value Strategy
|
314 |
+
gr.Markdown("### Step 2: Global Missing Value Strategy")
|
315 |
+
missing_strategy_dropdown = gr.Dropdown(
|
316 |
+
label="Missing Value Strategy",
|
317 |
+
choices=["drop", "mean", "median", "mode"],
|
318 |
+
value="drop",
|
319 |
+
info="Select how to handle missing values for all columns."
|
320 |
+
)
|
321 |
+
save_missing_btn = gr.Button("Save Missing Value Strategy")
|
322 |
+
missing_status = gr.Textbox(label="Missing Strategy Status", interactive=False)
|
323 |
+
missing_preview = gr.Dataframe(label="Data Preview after Missing Strategy", interactive=False)
|
324 |
+
|
325 |
+
# Step 3: Select Features and Target
|
326 |
+
gr.Markdown("### Step 3: Select Features and Target")
|
327 |
+
feature_selector = gr.CheckboxGroup(label="Select Input Features", choices=[], interactive=True)
|
328 |
+
target_selector = gr.Dropdown(label="Select Target Column", choices=[], interactive=True)
|
329 |
+
save_features_btn = gr.Button("Save Features and Target")
|
330 |
+
features_status = gr.Textbox(label="Features/Target Status", interactive=False)
|
331 |
+
features_preview = gr.Dataframe(label="Data Preview after Feature Selection", interactive=False)
|
332 |
+
|
333 |
+
# Step 4: Transformation Options
|
334 |
+
gr.Markdown("### Step 4: Transformation Options")
|
335 |
+
gr.Markdown(
|
336 |
+
"For each selected feature (in order), specify a transformation. Allowed options: **No Transformation**, **Label Encode**, **Normalize**. "
|
337 |
+
"Enter your choices as a comma-separated list. E.g.: No Transformation, Label Encode, Normalize"
|
338 |
+
)
|
339 |
+
transformation_text = gr.Textbox(label="Transformation Options", placeholder="E.g. No Transformation, Label Encode, Normalize", lines=1)
|
340 |
+
save_transformation_btn = gr.Button("Save Transformation Options")
|
341 |
+
transformation_status = gr.Textbox(label="Transformation Status", interactive=False)
|
342 |
+
transformation_preview = gr.Dataframe(label="Data Preview after Transformation", interactive=False)
|
343 |
+
|
344 |
+
with gr.Tab("Model Training"):
|
345 |
+
gr.Markdown("### Model Training and Experiment Logging")
|
346 |
+
# Global Experiment Title Input
|
347 |
+
experiment_title_input = gr.Textbox(label="Experiment Title", placeholder="Enter a title for this experiment", lines=1)
|
348 |
+
|
349 |
+
gr.Markdown("### Model Selection and Hyperparameter Tuning")
|
350 |
+
model_selector = gr.CheckboxGroup(
|
351 |
+
label="Select Models to Train",
|
352 |
+
choices=["Logistic Regression", "Decision Tree", "Random Forest", "SVM", "Naive Bayes"],
|
353 |
+
value=[], interactive=True
|
354 |
+
)
|
355 |
+
with gr.Column(visible=False) as lr_col:
|
356 |
+
gr.Markdown("**Logistic Regression**")
|
357 |
+
lr_c = gr.Slider(0.01, 10.0, step=0.01, value=1.0, label="C", interactive=True)
|
358 |
+
lr_max_iter = gr.Slider(50, 500, step=10, value=100, label="Max Iterations", interactive=True)
|
359 |
+
with gr.Column(visible=False) as dt_col:
|
360 |
+
gr.Markdown("**Decision Tree**")
|
361 |
+
dt_max_depth = gr.Slider(1, 50, step=1, value=10, label="Max Depth", interactive=True)
|
362 |
+
dt_min_samples_split = gr.Slider(2, 10, step=1, value=2, label="Min Samples Split", interactive=True)
|
363 |
+
with gr.Column(visible=False) as rf_col:
|
364 |
+
gr.Markdown("**Random Forest**")
|
365 |
+
rf_n_estimators = gr.Slider(10, 200, step=10, value=100, label="N Estimators", interactive=True)
|
366 |
+
rf_max_depth = gr.Slider(1, 50, step=1, value=10, label="Max Depth", interactive=True)
|
367 |
+
with gr.Column(visible=False) as svm_col:
|
368 |
+
gr.Markdown("**SVM**")
|
369 |
+
svm_c = gr.Slider(0.01, 10.0, step=0.01, value=1.0, label="C", interactive=True)
|
370 |
+
svm_kernel = gr.Radio(["linear", "poly", "rbf", "sigmoid"], value="rbf", label="Kernel", interactive=True)
|
371 |
+
with gr.Column(visible=False) as nb_col:
|
372 |
+
gr.Markdown("**Naive Bayes**")
|
373 |
+
nb_var_smoothing = gr.Slider(1e-10, 1e-5, step=1e-10, value=1e-9, label="Var Smoothing", interactive=True)
|
374 |
+
|
375 |
+
model_columns = {
|
376 |
+
"Logistic Regression": lr_col,
|
377 |
+
"Decision Tree": dt_col,
|
378 |
+
"Random Forest": rf_col,
|
379 |
+
"SVM": svm_col,
|
380 |
+
"Naive Bayes": nb_col,
|
381 |
+
}
|
382 |
+
|
383 |
+
def toggle_model_ui(selected_models):
|
384 |
+
updates = []
|
385 |
+
for model_name, panel in model_columns.items():
|
386 |
+
updates.append(gr.update(visible=(model_name in selected_models)))
|
387 |
+
return updates
|
388 |
+
|
389 |
+
model_selector.change(
|
390 |
+
fn=toggle_model_ui,
|
391 |
+
inputs=model_selector,
|
392 |
+
outputs=[lr_col, dt_col, rf_col, svm_col, nb_col]
|
393 |
+
)
|
394 |
+
|
395 |
+
gr.Markdown("### Training Parameters")
|
396 |
+
train_slider = gr.Slider(minimum=0.5, maximum=0.9, step=0.05, value=0.8, label="Training Set Size (proportion)", interactive=True)
|
397 |
+
train_btn = gr.Button("Train Selected Models")
|
398 |
+
training_output = gr.Textbox(label="Training Output", lines=8, interactive=False)
|
399 |
+
|
400 |
+
|
401 |
+
# ---------------------------
|
402 |
+
# Define Component Interactions
|
403 |
+
# ---------------------------
|
404 |
+
file_input.change(
|
405 |
+
fn=handle_upload,
|
406 |
+
inputs=file_input,
|
407 |
+
outputs=[upload_status, df_preview, feature_selector, target_selector]
|
408 |
+
)
|
409 |
+
|
410 |
+
save_missing_btn.click(
|
411 |
+
fn=save_missing_strategy,
|
412 |
+
inputs=missing_strategy_dropdown,
|
413 |
+
outputs=[missing_status, missing_preview]
|
414 |
+
)
|
415 |
+
|
416 |
+
save_features_btn.click(
|
417 |
+
fn=save_feature_target_selection,
|
418 |
+
inputs=[feature_selector, target_selector],
|
419 |
+
outputs=[features_status, transformation_text, features_preview]
|
420 |
+
)
|
421 |
+
|
422 |
+
save_transformation_btn.click(
|
423 |
+
fn=save_transformation_options,
|
424 |
+
inputs=transformation_text,
|
425 |
+
outputs=[transformation_status, transformation_preview]
|
426 |
+
)
|
427 |
+
|
428 |
+
train_btn.click(
|
429 |
+
fn=train_selected_models,
|
430 |
+
inputs=[
|
431 |
+
experiment_title_input,
|
432 |
+
model_selector,
|
433 |
+
lr_c, lr_max_iter,
|
434 |
+
dt_max_depth, dt_min_samples_split,
|
435 |
+
rf_n_estimators, rf_max_depth,
|
436 |
+
svm_c, svm_kernel,
|
437 |
+
nb_var_smoothing,
|
438 |
+
train_slider
|
439 |
+
],
|
440 |
+
outputs=training_output
|
441 |
+
)
|
442 |
+
with gr.Tab("Hyperparameter Tuning"):
|
443 |
+
gr.Markdown("### Fully Automatic Hyperparameter Tuning")
|
444 |
+
gr.Markdown(
|
445 |
+
"This step will automatically tune the selected models using **three search strategies**:\n"
|
446 |
+
"- **Grid Search**\n"
|
447 |
+
"- **Random Search**\n"
|
448 |
+
"- **Bayesian Optimization** (if available)\n\n"
|
449 |
+
"The best-performing result from each strategy will be logged, and the top strategy will be shown below."
|
450 |
+
)
|
451 |
+
experiment_title_hp = gr.Textbox(label="Experiment Title", placeholder="Enter experiment title")
|
452 |
+
model_selector_hp = gr.CheckboxGroup(
|
453 |
+
label="Select Models for Auto-Tuning",
|
454 |
+
choices=["Logistic Regression", "Decision Tree", "Random Forest", "SVM", "Naive Bayes"],
|
455 |
+
value=[], interactive=True
|
456 |
+
)
|
457 |
+
run_tune_btn = gr.Button("Run Hyperparameter Tuning")
|
458 |
+
tuning_output = gr.Textbox(label="Tuning Output", lines=10, interactive=False)
|
459 |
+
|
460 |
+
run_tune_btn.click(
|
461 |
+
fn=run_hyperparameter_tuning,
|
462 |
+
inputs=[experiment_title_hp, model_selector_hp],
|
463 |
+
outputs=[tuning_output, gr.Textbox(visible=False)]
|
464 |
+
)
|
465 |
+
with gr.Tab("Dashboard"):
|
466 |
+
log_df = gr.State(pd.DataFrame())
|
467 |
+
|
468 |
+
def load_log_dataframe_dynamic():
|
469 |
+
import os, json, pandas as pd
|
470 |
+
|
471 |
+
log_path = "experiments/logs/experiment_log.jsonl"
|
472 |
+
if not os.path.exists(log_path):
|
473 |
+
return pd.DataFrame([{"Message": "No logs found. Train or tune a model."}])
|
474 |
+
|
475 |
+
with open(log_path, "r", encoding="utf-8") as f:
|
476 |
+
lines = f.readlines()
|
477 |
+
|
478 |
+
rows = []
|
479 |
+
for line in lines:
|
480 |
+
try:
|
481 |
+
row = json.loads(line)
|
482 |
+
metrics = row.get("metrics", {})
|
483 |
+
entry = {
|
484 |
+
"Experiment": row.get("experiment_title", ""),
|
485 |
+
"Timestamp": row.get("timestamp", ""),
|
486 |
+
"Model": row.get("model", ""),
|
487 |
+
"Training Time (s)": round(row.get("training_time_sec", 0), 4),
|
488 |
+
"Inference Time (ms)": round(metrics.get("inference_time", 0) * 1000, 4),
|
489 |
+
"Model Size (bytes)": row.get("model_size_bytes", ""),
|
490 |
+
"CPU (%)": row.get("system_info", {}).get("cpu_utilization", ""),
|
491 |
+
"Memory (MB)": row.get("system_info", {}).get("memory_used_mb", ""),
|
492 |
+
"CPU Name": row.get("system_info", {}).get("cpu", ""),
|
493 |
+
"Hyperparameters": json.dumps(row.get("hyperparameters", {})),
|
494 |
+
}
|
495 |
+
for k, v in metrics.items():
|
496 |
+
if k != "inference_time":
|
497 |
+
entry[k] = round(v, 4) if isinstance(v, (float, int)) else v
|
498 |
+
rows.append(entry)
|
499 |
+
except Exception as e:
|
500 |
+
continue
|
501 |
+
|
502 |
+
return pd.DataFrame(rows)
|
503 |
+
|
504 |
+
refresh_button = gr.Button("π Refresh Dashboard")
|
505 |
+
dashboard_table = gr.Dataframe(
|
506 |
+
value=load_log_dataframe_dynamic(),
|
507 |
+
interactive=True,
|
508 |
+
wrap=False,
|
509 |
+
|
510 |
+
)
|
511 |
+
|
512 |
+
refresh_button.click(
|
513 |
+
fn=load_log_dataframe_dynamic,
|
514 |
+
outputs=dashboard_table,
|
515 |
+
)
|
516 |
+
|
517 |
+
with gr.Tab("Summary"):
|
518 |
+
|
519 |
+
gr.Markdown("### π Best Models by Metric")
|
520 |
+
gr.Markdown(
|
521 |
+
"- β
Automatically finds the **best model** for each evaluation metric from all logged experiments.\n"
|
522 |
+
"- π Use the **Refresh** button to update this view after new training or tuning."
|
523 |
+
)
|
524 |
+
|
525 |
+
summary_df = gr.Dataframe(label="Top Models by Metric", interactive=False)
|
526 |
+
|
527 |
+
def refresh_summary():
|
528 |
+
import pandas as pd, os, json
|
529 |
+
|
530 |
+
log_path = "experiments/logs/experiment_log.jsonl"
|
531 |
+
if not os.path.exists(log_path):
|
532 |
+
return pd.DataFrame([{"Message": "No logs found. Train or tune a model first."}])
|
533 |
+
|
534 |
+
df = pd.read_json(log_path, lines=True)
|
535 |
+
metric_keys = [
|
536 |
+
"accuracy_test", "precision_test", "recall_test", "f1_score_test"
|
537 |
+
]
|
538 |
+
|
539 |
+
best_rows = []
|
540 |
+
|
541 |
+
for metric in metric_keys:
|
542 |
+
best = None
|
543 |
+
best_score = -float("inf")
|
544 |
+
|
545 |
+
for _, row in df.iterrows():
|
546 |
+
score = row.get("metrics", {}).get(metric)
|
547 |
+
if isinstance(score, (int, float)) and score > best_score:
|
548 |
+
best = row
|
549 |
+
best_score = score
|
550 |
+
|
551 |
+
if best is not None:
|
552 |
+
best_rows.append({
|
553 |
+
"Metric": metric,
|
554 |
+
"Best Score": round(best_score, 4),
|
555 |
+
"Model": best.get("model"),
|
556 |
+
"Experiment": best.get("experiment_title"),
|
557 |
+
"Timestamp": best.get("timestamp"),
|
558 |
+
"Hyperparameters": json.dumps(best.get("hyperparameters", {})),
|
559 |
+
})
|
560 |
+
|
561 |
+
summary_df_result = pd.DataFrame(best_rows)
|
562 |
+
if not summary_df_result.empty:
|
563 |
+
return summary_df_result
|
564 |
+
else:
|
565 |
+
return pd.DataFrame([{"Message": "No valid metrics found in logs."}])
|
566 |
+
|
567 |
+
refresh_btn = gr.Button("π Refresh")
|
568 |
+
refresh_btn.click(fn=refresh_summary, outputs=summary_df)
|
569 |
+
|
570 |
+
# Load initial data
|
571 |
+
summary_df.value = refresh_summary()
|
572 |
+
|
573 |
+
|
574 |
+
demo.launch(ssr_mode=False)
|
data/iris_synthetic_data.csv
ADDED
@@ -0,0 +1,3001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sepal length,sepal width,petal length,petal width,label
|
2 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
3 |
+
5.3,4.1,1.5,0.1,Iris-setosa
|
4 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
5 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
6 |
+
4.9,3.0,1.5,0.3,Iris-setosa
|
7 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
8 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
9 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
10 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
11 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
12 |
+
5.0,3.3,1.5,0.2,Iris-setosa
|
13 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
14 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
15 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
16 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
17 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
18 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
19 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
20 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
21 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
22 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
23 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
24 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
25 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
26 |
+
4.9,3.0,1.5,0.3,Iris-setosa
|
27 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
28 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
29 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
30 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
31 |
+
5.0,3.3,1.6,0.4,Iris-setosa
|
32 |
+
5.3,3.9,1.5,0.3,Iris-setosa
|
33 |
+
5.1,3.3,1.5,0.2,Iris-setosa
|
34 |
+
5.4,4.2,1.5,0.2,Iris-setosa
|
35 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
36 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
37 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
38 |
+
4.9,3.4,1.8,0.2,Iris-setosa
|
39 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
40 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
41 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
42 |
+
5.4,3.4,1.5,0.2,Iris-setosa
|
43 |
+
5.4,3.4,1.5,0.3,Iris-setosa
|
44 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
45 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
46 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
47 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
48 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
49 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
50 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
51 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
52 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
53 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
54 |
+
5.3,4.0,1.5,0.1,Iris-setosa
|
55 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
56 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
57 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
58 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
59 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
60 |
+
4.7,3.1,1.5,0.3,Iris-setosa
|
61 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
62 |
+
5.5,3.7,1.5,0.2,Iris-setosa
|
63 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
64 |
+
5.6,4.4,1.5,0.4,Iris-setosa
|
65 |
+
5.3,3.9,1.3,0.4,Iris-setosa
|
66 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
67 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
68 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
69 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
70 |
+
4.3,3.0,1.1,0.1,Iris-setosa
|
71 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
72 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
73 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
74 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
75 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
76 |
+
5.3,3.9,1.8,0.4,Iris-setosa
|
77 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
78 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
79 |
+
5.0,3.3,1.6,0.4,Iris-setosa
|
80 |
+
5.3,4.0,1.6,0.2,Iris-setosa
|
81 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
82 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
83 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
84 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
85 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
86 |
+
5.7,4.1,1.3,0.2,Iris-setosa
|
87 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
88 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
89 |
+
4.5,3.1,1.5,0.2,Iris-setosa
|
90 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
91 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
92 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
93 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
94 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
95 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
96 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
97 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
98 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
99 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
100 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
101 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
102 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
103 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
104 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
105 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
106 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
107 |
+
5.4,3.5,1.3,0.2,Iris-setosa
|
108 |
+
4.9,3.1,1.6,0.1,Iris-setosa
|
109 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
110 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
111 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
112 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
113 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
114 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
115 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
116 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
117 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
118 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
119 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
120 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
121 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
122 |
+
5.5,3.9,1.5,0.4,Iris-setosa
|
123 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
124 |
+
5.3,3.5,1.5,0.2,Iris-setosa
|
125 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
126 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
127 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
128 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
129 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
130 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
131 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
132 |
+
5.8,4.0,1.1,0.2,Iris-setosa
|
133 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
134 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
135 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
136 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
137 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
138 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
139 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
140 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
141 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
142 |
+
5.4,4.0,1.3,0.1,Iris-setosa
|
143 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
144 |
+
5.2,3.7,1.6,0.3,Iris-setosa
|
145 |
+
4.4,3.0,1.1,0.1,Iris-setosa
|
146 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
147 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
148 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
149 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
150 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
151 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
152 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
153 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
154 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
155 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
156 |
+
5.1,3.9,1.6,0.2,Iris-setosa
|
157 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
158 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
159 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
160 |
+
4.6,3.0,1.3,0.1,Iris-setosa
|
161 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
162 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
163 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
164 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
165 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
166 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
167 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
168 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
169 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
170 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
171 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
172 |
+
5.1,3.5,1.3,0.2,Iris-setosa
|
173 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
174 |
+
5.3,3.4,1.5,0.4,Iris-setosa
|
175 |
+
5.0,3.6,1.5,0.5,Iris-setosa
|
176 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
177 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
178 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
179 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
180 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
181 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
182 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
183 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
184 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
185 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
186 |
+
5.6,4.3,1.5,0.3,Iris-setosa
|
187 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
188 |
+
5.3,3.8,1.5,0.4,Iris-setosa
|
189 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
190 |
+
5.8,4.0,1.1,0.2,Iris-setosa
|
191 |
+
4.9,3.2,1.3,0.2,Iris-setosa
|
192 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
193 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
194 |
+
4.4,3.0,1.1,0.1,Iris-setosa
|
195 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
196 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
197 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
198 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
199 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
200 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
201 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
202 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
203 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
204 |
+
4.7,3.1,1.5,0.3,Iris-setosa
|
205 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
206 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
207 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
208 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
209 |
+
4.7,3.1,1.5,0.2,Iris-setosa
|
210 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
211 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
212 |
+
5.8,4.0,1.3,0.2,Iris-setosa
|
213 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
214 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
215 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
216 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
217 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
218 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
219 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
220 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
221 |
+
5.0,3.5,1.3,0.4,Iris-setosa
|
222 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
223 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
224 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
225 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
226 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
227 |
+
4.9,3.4,1.6,0.3,Iris-setosa
|
228 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
229 |
+
5.3,3.9,1.8,0.4,Iris-setosa
|
230 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
231 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
232 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
233 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
234 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
235 |
+
5.0,3.5,1.5,0.5,Iris-setosa
|
236 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
237 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
238 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
239 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
240 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
241 |
+
4.8,3.2,1.6,0.2,Iris-setosa
|
242 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
243 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
244 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
245 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
246 |
+
4.7,3.2,1.6,0.2,Iris-setosa
|
247 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
248 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
249 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
250 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
251 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
252 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
253 |
+
5.4,3.4,1.3,0.3,Iris-setosa
|
254 |
+
4.9,3.5,1.1,0.3,Iris-setosa
|
255 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
256 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
257 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
258 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
259 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
260 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
261 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
262 |
+
4.8,3.0,1.5,0.3,Iris-setosa
|
263 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
264 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
265 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
266 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
267 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
268 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
269 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
270 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
271 |
+
4.6,3.5,1.3,0.3,Iris-setosa
|
272 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
273 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
274 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
275 |
+
5.1,3.6,1.5,0.4,Iris-setosa
|
276 |
+
4.8,2.9,1.5,0.1,Iris-setosa
|
277 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
278 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
279 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
280 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
281 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
282 |
+
4.9,3.1,1.6,0.1,Iris-setosa
|
283 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
284 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
285 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
286 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
287 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
288 |
+
5.0,3.4,1.6,0.5,Iris-setosa
|
289 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
290 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
291 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
292 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
293 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
294 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
295 |
+
5.1,3.8,1.8,0.3,Iris-setosa
|
296 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
297 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
298 |
+
5.5,3.9,1.5,0.4,Iris-setosa
|
299 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
300 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
301 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
302 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
303 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
304 |
+
5.2,3.8,1.6,0.2,Iris-setosa
|
305 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
306 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
307 |
+
5.6,3.8,1.6,0.4,Iris-setosa
|
308 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
309 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
310 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
311 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
312 |
+
5.1,3.3,1.6,0.4,Iris-setosa
|
313 |
+
5.7,4.0,1.3,0.2,Iris-setosa
|
314 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
315 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
316 |
+
5.5,4.1,1.5,0.2,Iris-setosa
|
317 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
318 |
+
5.3,3.5,1.5,0.3,Iris-setosa
|
319 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
320 |
+
5.4,3.4,1.5,0.3,Iris-setosa
|
321 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
322 |
+
5.3,3.7,1.5,0.3,Iris-setosa
|
323 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
324 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
325 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
326 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
327 |
+
5.0,3.4,1.5,0.3,Iris-setosa
|
328 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
329 |
+
5.2,3.4,1.5,0.3,Iris-setosa
|
330 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
331 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
332 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
333 |
+
5.4,4.2,1.5,0.2,Iris-setosa
|
334 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
335 |
+
5.1,3.8,1.8,0.3,Iris-setosa
|
336 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
337 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
338 |
+
5.4,3.4,1.5,0.3,Iris-setosa
|
339 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
340 |
+
5.0,3.5,1.5,0.4,Iris-setosa
|
341 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
342 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
343 |
+
5.0,3.5,1.5,0.3,Iris-setosa
|
344 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
345 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
346 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
347 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
348 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
349 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
350 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
351 |
+
5.4,3.4,1.3,0.3,Iris-setosa
|
352 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
353 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
354 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
355 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
356 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
357 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
358 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
359 |
+
5.4,3.5,1.3,0.2,Iris-setosa
|
360 |
+
5.4,3.5,1.5,0.2,Iris-setosa
|
361 |
+
4.4,3.1,1.3,0.1,Iris-setosa
|
362 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
363 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
364 |
+
5.3,3.7,1.5,0.3,Iris-setosa
|
365 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
366 |
+
5.4,3.4,1.5,0.2,Iris-setosa
|
367 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
368 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
369 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
370 |
+
5.3,3.9,1.8,0.4,Iris-setosa
|
371 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
372 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
373 |
+
5.0,3.5,1.3,0.4,Iris-setosa
|
374 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
375 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
376 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
377 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
378 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
379 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
380 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
381 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
382 |
+
5.3,4.0,1.3,0.3,Iris-setosa
|
383 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
384 |
+
4.4,3.0,1.3,0.1,Iris-setosa
|
385 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
386 |
+
4.6,3.2,1.3,0.2,Iris-setosa
|
387 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
388 |
+
5.1,3.3,1.6,0.5,Iris-setosa
|
389 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
390 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
391 |
+
5.0,3.4,1.5,0.3,Iris-setosa
|
392 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
393 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
394 |
+
5.2,3.4,1.5,0.3,Iris-setosa
|
395 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
396 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
397 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
398 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
399 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
400 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
401 |
+
5.1,3.6,1.5,0.4,Iris-setosa
|
402 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
403 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
404 |
+
4.8,3.1,1.5,0.3,Iris-setosa
|
405 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
406 |
+
4.6,3.0,1.5,0.3,Iris-setosa
|
407 |
+
4.9,3.1,1.3,0.1,Iris-setosa
|
408 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
409 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
410 |
+
5.0,3.5,1.3,0.4,Iris-setosa
|
411 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
412 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
413 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
414 |
+
5.0,3.4,1.5,0.4,Iris-setosa
|
415 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
416 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
417 |
+
5.1,3.3,1.5,0.2,Iris-setosa
|
418 |
+
4.9,3.1,1.6,0.2,Iris-setosa
|
419 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
420 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
421 |
+
5.3,3.9,1.5,0.3,Iris-setosa
|
422 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
423 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
424 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
425 |
+
4.9,3.1,1.3,0.1,Iris-setosa
|
426 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
427 |
+
5.1,3.9,1.6,0.2,Iris-setosa
|
428 |
+
5.3,4.0,1.6,0.2,Iris-setosa
|
429 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
430 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
431 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
432 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
433 |
+
5.4,4.2,1.5,0.2,Iris-setosa
|
434 |
+
5.4,4.2,1.5,0.2,Iris-setosa
|
435 |
+
5.6,4.4,1.5,0.4,Iris-setosa
|
436 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
437 |
+
5.6,3.8,1.6,0.3,Iris-setosa
|
438 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
439 |
+
5.4,4.2,1.5,0.1,Iris-setosa
|
440 |
+
5.1,3.4,1.5,0.3,Iris-setosa
|
441 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
442 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
443 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
444 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
445 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
446 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
447 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
448 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
449 |
+
4.4,2.6,1.3,0.3,Iris-setosa
|
450 |
+
5.3,3.9,1.5,0.3,Iris-setosa
|
451 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
452 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
453 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
454 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
455 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
456 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
457 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
458 |
+
4.9,3.6,1.3,0.2,Iris-setosa
|
459 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
460 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
461 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
462 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
463 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
464 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
465 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
466 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
467 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
468 |
+
5.0,3.4,1.6,0.5,Iris-setosa
|
469 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
470 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
471 |
+
4.8,3.0,1.5,0.3,Iris-setosa
|
472 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
473 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
474 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
475 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
476 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
477 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
478 |
+
5.7,4.0,1.3,0.2,Iris-setosa
|
479 |
+
5.2,3.4,1.5,0.3,Iris-setosa
|
480 |
+
4.6,3.5,1.3,0.3,Iris-setosa
|
481 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
482 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
483 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
484 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
485 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
486 |
+
5.6,4.0,1.5,0.3,Iris-setosa
|
487 |
+
4.9,3.4,1.6,0.3,Iris-setosa
|
488 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
489 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
490 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
491 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
492 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
493 |
+
5.1,3.3,1.5,0.2,Iris-setosa
|
494 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
495 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
496 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
497 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
498 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
499 |
+
5.4,4.0,1.6,0.4,Iris-setosa
|
500 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
501 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
502 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
503 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
504 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
505 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
506 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
507 |
+
5.3,3.7,1.6,0.2,Iris-setosa
|
508 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
509 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
510 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
511 |
+
4.9,3.1,1.6,0.1,Iris-setosa
|
512 |
+
4.9,3.4,1.6,0.4,Iris-setosa
|
513 |
+
5.8,3.9,1.5,0.3,Iris-setosa
|
514 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
515 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
516 |
+
5.1,3.3,1.6,0.5,Iris-setosa
|
517 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
518 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
519 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
520 |
+
5.3,3.8,1.5,0.4,Iris-setosa
|
521 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
522 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
523 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
524 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
525 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
526 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
527 |
+
5.7,4.1,1.3,0.2,Iris-setosa
|
528 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
529 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
530 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
531 |
+
5.1,3.7,1.5,0.3,Iris-setosa
|
532 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
533 |
+
5.8,4.0,1.3,0.2,Iris-setosa
|
534 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
535 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
536 |
+
5.3,4.2,1.5,0.1,Iris-setosa
|
537 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
538 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
539 |
+
5.5,4.3,1.5,0.3,Iris-setosa
|
540 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
541 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
542 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
543 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
544 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
545 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
546 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
547 |
+
5.6,4.4,1.5,0.4,Iris-setosa
|
548 |
+
4.8,3.0,1.3,0.1,Iris-setosa
|
549 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
550 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
551 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
552 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
553 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
554 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
555 |
+
4.5,2.9,1.5,0.2,Iris-setosa
|
556 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
557 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
558 |
+
4.6,3.4,1.3,0.3,Iris-setosa
|
559 |
+
5.5,3.7,1.6,0.3,Iris-setosa
|
560 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
561 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
562 |
+
5.5,3.7,1.6,0.2,Iris-setosa
|
563 |
+
5.3,4.0,1.3,0.3,Iris-setosa
|
564 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
565 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
566 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
567 |
+
5.2,3.7,1.8,0.3,Iris-setosa
|
568 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
569 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
570 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
571 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
572 |
+
4.6,3.2,1.3,0.2,Iris-setosa
|
573 |
+
4.9,3.6,1.3,0.2,Iris-setosa
|
574 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
575 |
+
5.6,4.0,1.5,0.3,Iris-setosa
|
576 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
577 |
+
5.5,3.9,1.5,0.4,Iris-setosa
|
578 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
579 |
+
4.9,3.4,1.6,0.3,Iris-setosa
|
580 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
581 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
582 |
+
4.6,3.3,1.5,0.3,Iris-setosa
|
583 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
584 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
585 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
586 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
587 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
588 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
589 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
590 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
591 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
592 |
+
5.0,3.5,1.5,0.3,Iris-setosa
|
593 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
594 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
595 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
596 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
597 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
598 |
+
5.1,3.4,1.5,0.3,Iris-setosa
|
599 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
600 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
601 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
602 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
603 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
604 |
+
4.8,3.1,1.5,0.1,Iris-setosa
|
605 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
606 |
+
4.8,3.6,1.1,0.2,Iris-setosa
|
607 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
608 |
+
5.3,3.4,1.5,0.3,Iris-setosa
|
609 |
+
4.6,3.3,1.5,0.3,Iris-setosa
|
610 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
611 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
612 |
+
5.0,3.4,1.5,0.3,Iris-setosa
|
613 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
614 |
+
5.3,3.8,1.5,0.4,Iris-setosa
|
615 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
616 |
+
5.4,3.4,1.3,0.3,Iris-setosa
|
617 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
618 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
619 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
620 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
621 |
+
4.8,3.0,1.5,0.2,Iris-setosa
|
622 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
623 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
624 |
+
5.2,3.8,1.6,0.2,Iris-setosa
|
625 |
+
5.3,4.1,1.5,0.1,Iris-setosa
|
626 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
627 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
628 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
629 |
+
5.5,3.9,1.6,0.4,Iris-setosa
|
630 |
+
5.3,3.9,1.8,0.4,Iris-setosa
|
631 |
+
5.1,3.4,1.5,0.4,Iris-setosa
|
632 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
633 |
+
4.9,3.1,1.6,0.2,Iris-setosa
|
634 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
635 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
636 |
+
4.5,3.1,1.5,0.2,Iris-setosa
|
637 |
+
5.3,3.4,1.5,0.3,Iris-setosa
|
638 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
639 |
+
5.2,3.8,1.6,0.2,Iris-setosa
|
640 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
641 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
642 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
643 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
644 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
645 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
646 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
647 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
648 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
649 |
+
4.5,3.1,1.5,0.2,Iris-setosa
|
650 |
+
5.0,3.4,1.6,0.5,Iris-setosa
|
651 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
652 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
653 |
+
4.7,2.8,1.3,0.3,Iris-setosa
|
654 |
+
5.4,4.2,1.5,0.1,Iris-setosa
|
655 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
656 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
657 |
+
5.0,3.4,1.5,0.4,Iris-setosa
|
658 |
+
5.8,4.0,1.3,0.2,Iris-setosa
|
659 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
660 |
+
4.6,3.3,1.5,0.3,Iris-setosa
|
661 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
662 |
+
5.3,3.7,1.6,0.3,Iris-setosa
|
663 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
664 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
665 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
666 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
667 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
668 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
669 |
+
4.6,3.6,0.9,0.2,Iris-setosa
|
670 |
+
4.7,3.0,1.5,0.1,Iris-setosa
|
671 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
672 |
+
5.4,4.2,1.5,0.1,Iris-setosa
|
673 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
674 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
675 |
+
4.8,3.0,1.5,0.2,Iris-setosa
|
676 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
677 |
+
4.8,3.0,1.5,0.3,Iris-setosa
|
678 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
679 |
+
4.7,3.0,1.5,0.1,Iris-setosa
|
680 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
681 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
682 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
683 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
684 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
685 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
686 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
687 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
688 |
+
5.0,3.6,1.5,0.5,Iris-setosa
|
689 |
+
5.7,4.1,1.3,0.2,Iris-setosa
|
690 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
691 |
+
4.6,3.5,1.3,0.3,Iris-setosa
|
692 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
693 |
+
4.9,3.1,1.3,0.1,Iris-setosa
|
694 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
695 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
696 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
697 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
698 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
699 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
700 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
701 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
702 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
703 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
704 |
+
5.0,3.4,1.5,0.4,Iris-setosa
|
705 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
706 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
707 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
708 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
709 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
710 |
+
5.0,3.4,1.5,0.4,Iris-setosa
|
711 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
712 |
+
4.6,3.5,1.1,0.2,Iris-setosa
|
713 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
714 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
715 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
716 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
717 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
718 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
719 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
720 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
721 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
722 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
723 |
+
5.2,3.7,1.6,0.3,Iris-setosa
|
724 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
725 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
726 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
727 |
+
5.5,3.9,1.5,0.4,Iris-setosa
|
728 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
729 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
730 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
731 |
+
5.3,3.5,1.5,0.2,Iris-setosa
|
732 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
733 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
734 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
735 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
736 |
+
5.1,3.8,1.8,0.4,Iris-setosa
|
737 |
+
5.3,4.2,1.5,0.1,Iris-setosa
|
738 |
+
4.6,3.3,1.5,0.3,Iris-setosa
|
739 |
+
4.8,3.6,1.1,0.2,Iris-setosa
|
740 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
741 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
742 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
743 |
+
4.6,3.2,1.3,0.2,Iris-setosa
|
744 |
+
4.8,3.6,1.1,0.2,Iris-setosa
|
745 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
746 |
+
5.2,3.4,1.5,0.3,Iris-setosa
|
747 |
+
5.0,3.3,1.5,0.2,Iris-setosa
|
748 |
+
5.3,3.9,1.5,0.3,Iris-setosa
|
749 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
750 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
751 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
752 |
+
4.4,3.0,1.3,0.1,Iris-setosa
|
753 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
754 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
755 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
756 |
+
5.0,3.6,1.5,0.5,Iris-setosa
|
757 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
758 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
759 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
760 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
761 |
+
4.9,3.1,1.6,0.2,Iris-setosa
|
762 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
763 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
764 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
765 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
766 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
767 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
768 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
769 |
+
5.1,3.8,1.6,0.3,Iris-setosa
|
770 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
771 |
+
5.8,4.0,1.3,0.2,Iris-setosa
|
772 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
773 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
774 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
775 |
+
5.1,3.7,1.6,0.4,Iris-setosa
|
776 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
777 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
778 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
779 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
780 |
+
4.4,3.0,1.3,0.1,Iris-setosa
|
781 |
+
5.4,4.0,1.5,0.1,Iris-setosa
|
782 |
+
5.0,3.3,1.5,0.2,Iris-setosa
|
783 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
784 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
785 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
786 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
787 |
+
5.3,3.4,1.5,0.2,Iris-setosa
|
788 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
789 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
790 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
791 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
792 |
+
5.1,3.4,1.5,0.3,Iris-setosa
|
793 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
794 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
795 |
+
5.3,4.0,1.6,0.2,Iris-setosa
|
796 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
797 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
798 |
+
5.4,4.0,1.6,0.4,Iris-setosa
|
799 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
800 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
801 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
802 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
803 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
804 |
+
5.3,3.7,1.5,0.3,Iris-setosa
|
805 |
+
5.5,3.9,1.6,0.4,Iris-setosa
|
806 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
807 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
808 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
809 |
+
4.8,3.4,1.8,0.2,Iris-setosa
|
810 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
811 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
812 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
813 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
814 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
815 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
816 |
+
5.3,3.7,1.5,0.3,Iris-setosa
|
817 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
818 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
819 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
820 |
+
4.5,2.4,1.3,0.3,Iris-setosa
|
821 |
+
4.5,2.3,1.3,0.3,Iris-setosa
|
822 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
823 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
824 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
825 |
+
4.8,3.0,1.5,0.3,Iris-setosa
|
826 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
827 |
+
4.4,2.6,1.3,0.2,Iris-setosa
|
828 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
829 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
830 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
831 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
832 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
833 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
834 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
835 |
+
4.9,3.5,1.3,0.2,Iris-setosa
|
836 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
837 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
838 |
+
5.4,4.2,1.5,0.1,Iris-setosa
|
839 |
+
4.9,3.0,1.5,0.3,Iris-setosa
|
840 |
+
5.0,3.5,1.5,0.5,Iris-setosa
|
841 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
842 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
843 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
844 |
+
4.9,3.4,1.8,0.2,Iris-setosa
|
845 |
+
5.1,3.3,1.6,0.4,Iris-setosa
|
846 |
+
4.6,3.5,1.1,0.2,Iris-setosa
|
847 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
848 |
+
5.3,3.8,1.5,0.4,Iris-setosa
|
849 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
850 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
851 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
852 |
+
5.3,3.9,1.6,0.4,Iris-setosa
|
853 |
+
4.9,3.4,1.8,0.3,Iris-setosa
|
854 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
855 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
856 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
857 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
858 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
859 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
860 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
861 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
862 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
863 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
864 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
865 |
+
5.4,3.4,1.5,0.3,Iris-setosa
|
866 |
+
4.9,3.5,1.3,0.3,Iris-setosa
|
867 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
868 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
869 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
870 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
871 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
872 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
873 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
874 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
875 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
876 |
+
5.3,4.0,1.5,0.1,Iris-setosa
|
877 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
878 |
+
5.3,3.9,1.3,0.4,Iris-setosa
|
879 |
+
5.4,4.0,1.6,0.4,Iris-setosa
|
880 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
881 |
+
4.9,3.2,1.3,0.2,Iris-setosa
|
882 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
883 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
884 |
+
4.6,3.5,1.3,0.3,Iris-setosa
|
885 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
886 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
887 |
+
5.1,3.3,1.6,0.4,Iris-setosa
|
888 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
889 |
+
5.0,3.4,1.6,0.5,Iris-setosa
|
890 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
891 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
892 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
893 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
894 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
895 |
+
4.9,3.6,1.3,0.2,Iris-setosa
|
896 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
897 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
898 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
899 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
900 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
901 |
+
4.7,3.2,1.6,0.2,Iris-setosa
|
902 |
+
5.0,3.5,1.5,0.5,Iris-setosa
|
903 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
904 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
905 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
906 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
907 |
+
5.1,3.8,1.6,0.3,Iris-setosa
|
908 |
+
4.7,3.6,1.1,0.2,Iris-setosa
|
909 |
+
5.3,3.9,1.6,0.3,Iris-setosa
|
910 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
911 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
912 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
913 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
914 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
915 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
916 |
+
5.5,4.3,1.5,0.3,Iris-setosa
|
917 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
918 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
919 |
+
4.9,3.6,1.3,0.2,Iris-setosa
|
920 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
921 |
+
4.5,2.9,1.5,0.1,Iris-setosa
|
922 |
+
4.9,3.1,1.6,0.2,Iris-setosa
|
923 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
924 |
+
4.8,3.0,1.5,0.2,Iris-setosa
|
925 |
+
5.6,3.8,1.6,0.4,Iris-setosa
|
926 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
927 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
928 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
929 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
930 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
931 |
+
5.3,3.4,1.5,0.3,Iris-setosa
|
932 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
933 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
934 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
935 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
936 |
+
5.2,3.7,1.8,0.3,Iris-setosa
|
937 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
938 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
939 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
940 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
941 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
942 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
943 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
944 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
945 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
946 |
+
4.8,3.0,1.3,0.1,Iris-setosa
|
947 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
948 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
949 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
950 |
+
5.3,3.4,1.3,0.2,Iris-setosa
|
951 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
952 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
953 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
954 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
955 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
956 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
957 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
958 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
959 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
960 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
961 |
+
5.0,3.5,1.5,0.5,Iris-setosa
|
962 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
963 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
964 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
965 |
+
5.5,3.7,1.6,0.3,Iris-setosa
|
966 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
967 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
968 |
+
5.1,3.7,1.6,0.4,Iris-setosa
|
969 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
970 |
+
4.4,3.0,1.3,0.1,Iris-setosa
|
971 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
972 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
973 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
974 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
975 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
976 |
+
4.5,2.9,1.5,0.2,Iris-setosa
|
977 |
+
5.1,3.8,1.8,0.4,Iris-setosa
|
978 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
979 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
980 |
+
5.0,3.3,1.5,0.2,Iris-setosa
|
981 |
+
4.4,3.0,1.1,0.1,Iris-setosa
|
982 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
983 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
984 |
+
5.1,3.5,1.3,0.2,Iris-setosa
|
985 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
986 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
987 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
988 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
989 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
990 |
+
4.8,3.4,1.8,0.2,Iris-setosa
|
991 |
+
5.6,4.4,1.5,0.4,Iris-setosa
|
992 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
993 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
994 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
995 |
+
5.1,3.7,1.5,0.3,Iris-setosa
|
996 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
997 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
998 |
+
5.3,3.9,1.6,0.3,Iris-setosa
|
999 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
1000 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
1001 |
+
4.9,3.0,1.5,0.3,Iris-setosa
|
1002 |
+
5.4,2.4,3.6,1.1,Iris-versicolor
|
1003 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1004 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
1005 |
+
5.3,2.5,3.4,1.2,Iris-versicolor
|
1006 |
+
5.7,3.0,3.9,1.3,Iris-versicolor
|
1007 |
+
5.4,2.3,3.9,1.3,Iris-versicolor
|
1008 |
+
5.3,2.4,3.6,1.1,Iris-versicolor
|
1009 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
1010 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
1011 |
+
5.3,2.2,3.8,1.2,Iris-versicolor
|
1012 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1013 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
1014 |
+
5.5,3.0,4.5,1.5,Iris-versicolor
|
1015 |
+
5.6,3.0,4.5,1.4,Iris-versicolor
|
1016 |
+
5.3,2.7,3.9,1.4,Iris-versicolor
|
1017 |
+
6.2,2.9,4.6,1.4,Iris-versicolor
|
1018 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
1019 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1020 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1021 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
1022 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
1023 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
1024 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
1025 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1026 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
1027 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
1028 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
1029 |
+
5.7,2.5,3.9,1.3,Iris-versicolor
|
1030 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1031 |
+
6.2,2.8,4.5,1.3,Iris-versicolor
|
1032 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
1033 |
+
5.8,2.8,4.1,1.3,Iris-versicolor
|
1034 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1035 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1036 |
+
6.1,2.8,3.9,1.3,Iris-versicolor
|
1037 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1038 |
+
6.4,2.9,4.3,1.4,Iris-versicolor
|
1039 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
1040 |
+
6.9,3.1,5.0,1.5,Iris-versicolor
|
1041 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1042 |
+
5.9,3.1,4.5,1.7,Iris-versicolor
|
1043 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
1044 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1045 |
+
5.6,2.6,4.3,1.2,Iris-versicolor
|
1046 |
+
5.8,2.3,4.1,1.3,Iris-versicolor
|
1047 |
+
5.6,2.5,3.8,1.0,Iris-versicolor
|
1048 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
1049 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1050 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1051 |
+
6.1,2.9,4.5,1.4,Iris-versicolor
|
1052 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1053 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
1054 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1055 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
1056 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1057 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1058 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1059 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
1060 |
+
5.8,3.0,4.3,1.4,Iris-versicolor
|
1061 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1062 |
+
6.3,2.4,4.8,1.5,Iris-versicolor
|
1063 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
1064 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1065 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1066 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
1067 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1068 |
+
5.7,2.3,3.9,1.2,Iris-versicolor
|
1069 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
1070 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1071 |
+
5.9,3.1,4.3,1.5,Iris-versicolor
|
1072 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1073 |
+
5.1,2.1,3.6,1.0,Iris-versicolor
|
1074 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
1075 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
1076 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1077 |
+
5.4,2.4,3.8,1.1,Iris-versicolor
|
1078 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1079 |
+
6.2,2.8,4.5,1.3,Iris-versicolor
|
1080 |
+
5.8,2.8,3.9,1.3,Iris-versicolor
|
1081 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1082 |
+
5.4,3.0,4.5,1.4,Iris-versicolor
|
1083 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
1084 |
+
6.1,2.9,4.8,1.4,Iris-versicolor
|
1085 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1086 |
+
5.6,3.0,3.8,1.3,Iris-versicolor
|
1087 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
1088 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
1089 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
1090 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1091 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1092 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
1093 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
1094 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1095 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1096 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
1097 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1098 |
+
6.3,2.5,4.8,1.5,Iris-versicolor
|
1099 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
1100 |
+
5.5,2.5,3.9,1.3,Iris-versicolor
|
1101 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1102 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1103 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
1104 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
1105 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1106 |
+
5.5,2.5,3.9,1.3,Iris-versicolor
|
1107 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1108 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
1109 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
1110 |
+
5.3,2.5,3.4,1.2,Iris-versicolor
|
1111 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1112 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
1113 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1114 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
1115 |
+
5.5,2.5,4.3,1.3,Iris-versicolor
|
1116 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1117 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
1118 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1119 |
+
6.0,3.2,4.8,1.7,Iris-versicolor
|
1120 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1121 |
+
5.7,2.9,3.8,1.3,Iris-versicolor
|
1122 |
+
6.1,2.2,4.1,1.2,Iris-versicolor
|
1123 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1124 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1125 |
+
5.6,3.0,4.1,1.4,Iris-versicolor
|
1126 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1127 |
+
5.0,2.3,3.2,1.0,Iris-versicolor
|
1128 |
+
5.8,2.6,3.9,1.1,Iris-versicolor
|
1129 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
1130 |
+
5.5,2.6,4.5,1.2,Iris-versicolor
|
1131 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
1132 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
1133 |
+
5.8,2.3,4.1,1.3,Iris-versicolor
|
1134 |
+
5.8,2.7,3.9,1.0,Iris-versicolor
|
1135 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
1136 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
1137 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
1138 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1139 |
+
5.5,3.0,4.3,1.4,Iris-versicolor
|
1140 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
1141 |
+
6.0,2.9,4.3,1.4,Iris-versicolor
|
1142 |
+
5.8,2.8,3.8,1.3,Iris-versicolor
|
1143 |
+
7.0,3.2,4.6,1.4,Iris-versicolor
|
1144 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1145 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1146 |
+
5.0,2.4,3.4,1.0,Iris-versicolor
|
1147 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1148 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
1149 |
+
6.4,2.9,4.3,1.4,Iris-versicolor
|
1150 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1151 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1152 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
1153 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
1154 |
+
5.5,2.6,4.5,1.2,Iris-versicolor
|
1155 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
1156 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1157 |
+
5.6,2.9,3.8,1.3,Iris-versicolor
|
1158 |
+
5.8,2.6,3.6,1.0,Iris-versicolor
|
1159 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1160 |
+
5.5,3.0,4.3,1.4,Iris-versicolor
|
1161 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1162 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
1163 |
+
5.8,2.6,3.9,1.1,Iris-versicolor
|
1164 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
1165 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
1166 |
+
7.0,3.2,4.8,1.4,Iris-versicolor
|
1167 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1168 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
1169 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1170 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1171 |
+
6.3,2.2,4.5,1.4,Iris-versicolor
|
1172 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
1173 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
1174 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
1175 |
+
5.2,2.4,3.6,1.0,Iris-versicolor
|
1176 |
+
5.0,2.0,3.6,1.0,Iris-versicolor
|
1177 |
+
6.1,2.9,4.8,1.4,Iris-versicolor
|
1178 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
1179 |
+
6.1,2.8,4.1,1.4,Iris-versicolor
|
1180 |
+
5.5,2.4,3.6,1.0,Iris-versicolor
|
1181 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1182 |
+
5.7,3.1,4.6,1.7,Iris-versicolor
|
1183 |
+
5.8,2.6,3.9,1.1,Iris-versicolor
|
1184 |
+
5.3,2.7,3.9,1.4,Iris-versicolor
|
1185 |
+
6.6,3.1,4.6,1.5,Iris-versicolor
|
1186 |
+
6.1,2.8,4.8,1.5,Iris-versicolor
|
1187 |
+
5.8,2.8,3.9,1.3,Iris-versicolor
|
1188 |
+
5.6,3.0,4.3,1.4,Iris-versicolor
|
1189 |
+
6.9,3.1,4.8,1.4,Iris-versicolor
|
1190 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
1191 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1192 |
+
5.6,2.4,3.8,1.0,Iris-versicolor
|
1193 |
+
6.0,2.9,4.6,1.5,Iris-versicolor
|
1194 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1195 |
+
6.5,3.1,4.6,1.5,Iris-versicolor
|
1196 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1197 |
+
6.2,2.9,4.3,1.4,Iris-versicolor
|
1198 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
1199 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
1200 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1201 |
+
6.0,2.3,4.3,1.3,Iris-versicolor
|
1202 |
+
6.8,3.0,5.0,1.7,Iris-versicolor
|
1203 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1204 |
+
5.8,3.0,4.3,1.4,Iris-versicolor
|
1205 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
1206 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
1207 |
+
6.0,3.2,4.8,1.7,Iris-versicolor
|
1208 |
+
6.4,2.8,4.5,1.4,Iris-versicolor
|
1209 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
1210 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
1211 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1212 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
1213 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
1214 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
1215 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
1216 |
+
5.6,2.3,3.9,1.3,Iris-versicolor
|
1217 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1218 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1219 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
1220 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1221 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
1222 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
1223 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
1224 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1225 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1226 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
1227 |
+
5.8,3.0,4.1,1.4,Iris-versicolor
|
1228 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1229 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1230 |
+
5.9,3.2,4.8,1.7,Iris-versicolor
|
1231 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1232 |
+
5.5,3.0,4.5,1.5,Iris-versicolor
|
1233 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
1234 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1235 |
+
5.2,2.3,3.4,1.0,Iris-versicolor
|
1236 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1237 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
1238 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1239 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1240 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1241 |
+
5.8,2.6,3.8,1.0,Iris-versicolor
|
1242 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
1243 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1244 |
+
5.4,2.4,3.8,1.1,Iris-versicolor
|
1245 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1246 |
+
5.7,2.6,3.6,1.0,Iris-versicolor
|
1247 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
1248 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1249 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
1250 |
+
5.6,2.5,3.8,1.0,Iris-versicolor
|
1251 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1252 |
+
5.3,2.4,3.4,1.1,Iris-versicolor
|
1253 |
+
6.7,3.1,4.6,1.4,Iris-versicolor
|
1254 |
+
6.3,2.3,4.6,1.5,Iris-versicolor
|
1255 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
1256 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1257 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1258 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
1259 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1260 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1261 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1262 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1263 |
+
6.1,3.0,4.5,1.4,Iris-versicolor
|
1264 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1265 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1266 |
+
6.0,2.9,4.3,1.4,Iris-versicolor
|
1267 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
1268 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1269 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
1270 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
1271 |
+
6.3,2.4,4.6,1.4,Iris-versicolor
|
1272 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
1273 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1274 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
1275 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
1276 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1277 |
+
5.7,2.5,3.9,1.3,Iris-versicolor
|
1278 |
+
4.9,2.2,3.4,1.0,Iris-versicolor
|
1279 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
1280 |
+
5.0,2.0,3.6,1.0,Iris-versicolor
|
1281 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1282 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
1283 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
1284 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
1285 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
1286 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
1287 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1288 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
1289 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1290 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1291 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1292 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1293 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1294 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1295 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
1296 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1297 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
1298 |
+
6.1,2.2,4.1,1.2,Iris-versicolor
|
1299 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1300 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1301 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1302 |
+
5.6,2.5,3.8,1.0,Iris-versicolor
|
1303 |
+
5.3,2.6,3.9,1.4,Iris-versicolor
|
1304 |
+
4.9,2.3,3.4,1.0,Iris-versicolor
|
1305 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1306 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1307 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
1308 |
+
5.8,2.6,3.6,1.0,Iris-versicolor
|
1309 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1310 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
1311 |
+
5.3,2.7,3.9,1.4,Iris-versicolor
|
1312 |
+
6.1,2.8,4.6,1.3,Iris-versicolor
|
1313 |
+
5.7,2.8,3.6,1.3,Iris-versicolor
|
1314 |
+
6.6,2.9,4.8,1.6,Iris-versicolor
|
1315 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
1316 |
+
5.9,2.7,5.0,1.6,Iris-versicolor
|
1317 |
+
6.8,3.1,5.0,1.7,Iris-versicolor
|
1318 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
1319 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1320 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
1321 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1322 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
1323 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1324 |
+
5.6,2.9,3.8,1.3,Iris-versicolor
|
1325 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
1326 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
1327 |
+
6.7,2.8,4.6,1.4,Iris-versicolor
|
1328 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
1329 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
1330 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1331 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
1332 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1333 |
+
6.0,2.7,5.0,1.6,Iris-versicolor
|
1334 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
1335 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
1336 |
+
5.1,2.1,3.6,1.0,Iris-versicolor
|
1337 |
+
6.1,2.2,4.1,1.1,Iris-versicolor
|
1338 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
1339 |
+
5.7,2.5,3.8,1.0,Iris-versicolor
|
1340 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
1341 |
+
6.2,2.9,4.3,1.4,Iris-versicolor
|
1342 |
+
6.2,3.3,4.6,1.7,Iris-versicolor
|
1343 |
+
6.4,2.8,4.5,1.4,Iris-versicolor
|
1344 |
+
6.5,3.2,4.5,1.5,Iris-versicolor
|
1345 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1346 |
+
5.8,3.0,4.5,1.5,Iris-versicolor
|
1347 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
1348 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
1349 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1350 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1351 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
1352 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1353 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
1354 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
1355 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1356 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
1357 |
+
5.5,2.6,4.3,1.2,Iris-versicolor
|
1358 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
1359 |
+
6.6,3.1,4.6,1.5,Iris-versicolor
|
1360 |
+
5.9,3.1,4.3,1.6,Iris-versicolor
|
1361 |
+
6.3,2.9,4.5,1.4,Iris-versicolor
|
1362 |
+
5.3,2.4,3.4,1.0,Iris-versicolor
|
1363 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1364 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
1365 |
+
5.1,2.1,3.6,1.0,Iris-versicolor
|
1366 |
+
5.9,3.1,4.5,1.7,Iris-versicolor
|
1367 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
1368 |
+
5.7,2.5,3.8,1.0,Iris-versicolor
|
1369 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
1370 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
1371 |
+
5.8,2.7,3.8,1.1,Iris-versicolor
|
1372 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1373 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
1374 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
1375 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1376 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
1377 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
1378 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
1379 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
1380 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
1381 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
1382 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1383 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
1384 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
1385 |
+
5.8,2.3,4.1,1.3,Iris-versicolor
|
1386 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
1387 |
+
6.6,3.1,4.5,1.4,Iris-versicolor
|
1388 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1389 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
1390 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1391 |
+
5.6,2.6,4.3,1.2,Iris-versicolor
|
1392 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1393 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1394 |
+
5.7,2.5,3.6,1.0,Iris-versicolor
|
1395 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
1396 |
+
6.0,2.2,3.9,1.0,Iris-versicolor
|
1397 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
1398 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1399 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
1400 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1401 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
1402 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1403 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
1404 |
+
5.7,3.0,4.3,1.4,Iris-versicolor
|
1405 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
1406 |
+
6.7,3.0,4.5,1.4,Iris-versicolor
|
1407 |
+
6.2,3.3,4.5,1.6,Iris-versicolor
|
1408 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1409 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1410 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
1411 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1412 |
+
4.9,2.2,3.4,1.0,Iris-versicolor
|
1413 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1414 |
+
6.6,2.8,4.5,1.4,Iris-versicolor
|
1415 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1416 |
+
5.5,2.5,3.9,1.3,Iris-versicolor
|
1417 |
+
5.8,2.8,4.1,1.3,Iris-versicolor
|
1418 |
+
5.6,2.9,4.3,1.4,Iris-versicolor
|
1419 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1420 |
+
6.6,3.1,4.6,1.5,Iris-versicolor
|
1421 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
1422 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
1423 |
+
5.0,2.3,3.2,1.0,Iris-versicolor
|
1424 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
1425 |
+
6.2,3.3,4.5,1.6,Iris-versicolor
|
1426 |
+
5.0,2.4,3.4,1.0,Iris-versicolor
|
1427 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1428 |
+
5.8,2.8,3.9,1.2,Iris-versicolor
|
1429 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
1430 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
1431 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1432 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1433 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1434 |
+
6.0,2.7,5.0,1.6,Iris-versicolor
|
1435 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1436 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1437 |
+
6.2,2.2,4.5,1.4,Iris-versicolor
|
1438 |
+
6.1,2.8,3.9,1.3,Iris-versicolor
|
1439 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1440 |
+
5.7,2.7,4.1,1.1,Iris-versicolor
|
1441 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
1442 |
+
5.0,2.3,3.4,1.0,Iris-versicolor
|
1443 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1444 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
1445 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
1446 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
1447 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
1448 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1449 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1450 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
1451 |
+
5.9,3.2,4.8,1.7,Iris-versicolor
|
1452 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1453 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1454 |
+
5.7,2.9,3.8,1.3,Iris-versicolor
|
1455 |
+
5.5,3.0,4.5,1.4,Iris-versicolor
|
1456 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1457 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
1458 |
+
6.1,2.6,5.0,1.6,Iris-versicolor
|
1459 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
1460 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
1461 |
+
5.7,2.5,3.9,1.1,Iris-versicolor
|
1462 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
1463 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1464 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
1465 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1466 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1467 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
1468 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
1469 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
1470 |
+
6.3,2.5,4.8,1.5,Iris-versicolor
|
1471 |
+
5.7,3.0,4.3,1.2,Iris-versicolor
|
1472 |
+
6.2,2.9,4.6,1.4,Iris-versicolor
|
1473 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1474 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
1475 |
+
6.0,2.9,4.6,1.5,Iris-versicolor
|
1476 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
1477 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1478 |
+
5.7,2.8,3.6,1.3,Iris-versicolor
|
1479 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
1480 |
+
6.3,2.4,4.6,1.4,Iris-versicolor
|
1481 |
+
6.8,3.1,5.0,1.6,Iris-versicolor
|
1482 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
1483 |
+
5.8,2.7,3.9,1.1,Iris-versicolor
|
1484 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
1485 |
+
5.8,2.3,4.1,1.3,Iris-versicolor
|
1486 |
+
5.7,3.0,3.9,1.3,Iris-versicolor
|
1487 |
+
5.8,3.0,4.1,1.4,Iris-versicolor
|
1488 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
1489 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1490 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
1491 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
1492 |
+
7.0,3.1,4.8,1.4,Iris-versicolor
|
1493 |
+
5.8,2.8,4.1,1.3,Iris-versicolor
|
1494 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1495 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
1496 |
+
5.7,2.6,3.9,1.2,Iris-versicolor
|
1497 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1498 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
1499 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
1500 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1501 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1502 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
1503 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1504 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
1505 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1506 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
1507 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
1508 |
+
6.1,2.9,4.8,1.4,Iris-versicolor
|
1509 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1510 |
+
6.9,3.1,4.8,1.4,Iris-versicolor
|
1511 |
+
5.6,2.9,4.3,1.4,Iris-versicolor
|
1512 |
+
6.5,2.8,4.5,1.4,Iris-versicolor
|
1513 |
+
6.0,2.4,4.3,1.4,Iris-versicolor
|
1514 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
1515 |
+
5.7,2.5,3.9,1.3,Iris-versicolor
|
1516 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1517 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1518 |
+
6.0,2.2,3.9,1.0,Iris-versicolor
|
1519 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1520 |
+
5.6,3.0,4.3,1.4,Iris-versicolor
|
1521 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1522 |
+
5.0,2.4,3.1,1.0,Iris-versicolor
|
1523 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
1524 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1525 |
+
6.3,2.5,4.8,1.5,Iris-versicolor
|
1526 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1527 |
+
6.2,2.6,5.0,1.5,Iris-versicolor
|
1528 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
1529 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1530 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1531 |
+
6.0,2.8,3.9,1.3,Iris-versicolor
|
1532 |
+
5.8,2.8,4.1,1.1,Iris-versicolor
|
1533 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
1534 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
1535 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1536 |
+
6.0,2.8,4.8,1.6,Iris-versicolor
|
1537 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
1538 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1539 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1540 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1541 |
+
6.3,2.2,4.5,1.4,Iris-versicolor
|
1542 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
1543 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1544 |
+
6.1,3.4,4.5,1.6,Iris-versicolor
|
1545 |
+
6.0,2.2,4.1,1.0,Iris-versicolor
|
1546 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
1547 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1548 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1549 |
+
6.9,3.1,4.6,1.4,Iris-versicolor
|
1550 |
+
5.4,2.4,3.8,1.1,Iris-versicolor
|
1551 |
+
6.7,3.0,4.5,1.4,Iris-versicolor
|
1552 |
+
5.6,2.4,3.9,1.1,Iris-versicolor
|
1553 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1554 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1555 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
1556 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1557 |
+
5.9,3.1,4.6,1.7,Iris-versicolor
|
1558 |
+
6.4,3.2,4.6,1.6,Iris-versicolor
|
1559 |
+
5.8,2.2,4.3,1.4,Iris-versicolor
|
1560 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1561 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1562 |
+
6.3,2.4,4.8,1.5,Iris-versicolor
|
1563 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1564 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1565 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1566 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
1567 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1568 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1569 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1570 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
1571 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
1572 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
1573 |
+
6.1,2.6,5.0,1.6,Iris-versicolor
|
1574 |
+
5.0,2.0,3.6,1.0,Iris-versicolor
|
1575 |
+
5.7,3.0,3.9,1.3,Iris-versicolor
|
1576 |
+
5.8,2.7,3.9,1.1,Iris-versicolor
|
1577 |
+
6.1,2.2,4.1,1.2,Iris-versicolor
|
1578 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
1579 |
+
5.8,3.0,4.1,1.4,Iris-versicolor
|
1580 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1581 |
+
5.4,2.4,3.6,1.1,Iris-versicolor
|
1582 |
+
6.2,3.3,4.8,1.7,Iris-versicolor
|
1583 |
+
5.8,2.7,4.1,1.1,Iris-versicolor
|
1584 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
1585 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
1586 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
1587 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1588 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
1589 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1590 |
+
6.0,3.2,4.8,1.7,Iris-versicolor
|
1591 |
+
5.8,3.0,4.5,1.5,Iris-versicolor
|
1592 |
+
6.4,2.8,4.5,1.4,Iris-versicolor
|
1593 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
1594 |
+
6.0,2.2,3.9,1.0,Iris-versicolor
|
1595 |
+
5.5,2.6,4.3,1.2,Iris-versicolor
|
1596 |
+
6.1,2.9,4.5,1.4,Iris-versicolor
|
1597 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1598 |
+
5.7,2.7,4.1,1.1,Iris-versicolor
|
1599 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
1600 |
+
6.9,3.1,5.0,1.5,Iris-versicolor
|
1601 |
+
6.6,3.1,4.5,1.4,Iris-versicolor
|
1602 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1603 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
1604 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
1605 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
1606 |
+
6.3,2.4,4.6,1.5,Iris-versicolor
|
1607 |
+
5.1,2.1,3.6,1.0,Iris-versicolor
|
1608 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
1609 |
+
6.2,3.3,4.8,1.7,Iris-versicolor
|
1610 |
+
6.8,3.1,5.0,1.6,Iris-versicolor
|
1611 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
1612 |
+
6.3,2.9,4.5,1.3,Iris-versicolor
|
1613 |
+
6.3,2.3,4.3,1.3,Iris-versicolor
|
1614 |
+
5.6,3.0,4.3,1.4,Iris-versicolor
|
1615 |
+
5.8,2.3,3.9,1.0,Iris-versicolor
|
1616 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
1617 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
1618 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
1619 |
+
5.5,2.7,4.1,1.4,Iris-versicolor
|
1620 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
1621 |
+
5.7,3.0,4.3,1.3,Iris-versicolor
|
1622 |
+
6.0,2.3,4.3,1.3,Iris-versicolor
|
1623 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1624 |
+
5.0,2.4,3.2,1.0,Iris-versicolor
|
1625 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1626 |
+
5.7,2.3,3.9,1.2,Iris-versicolor
|
1627 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1628 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
1629 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
1630 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
1631 |
+
6.6,2.9,4.5,1.4,Iris-versicolor
|
1632 |
+
5.9,2.2,3.9,1.0,Iris-versicolor
|
1633 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1634 |
+
6.2,2.9,4.3,1.4,Iris-versicolor
|
1635 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
1636 |
+
5.5,2.4,4.1,1.3,Iris-versicolor
|
1637 |
+
5.6,2.5,3.8,1.0,Iris-versicolor
|
1638 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
1639 |
+
4.9,2.3,3.4,1.0,Iris-versicolor
|
1640 |
+
6.1,2.2,4.1,1.1,Iris-versicolor
|
1641 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
1642 |
+
6.8,3.0,5.0,1.7,Iris-versicolor
|
1643 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
1644 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1645 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1646 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1647 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
1648 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
1649 |
+
5.5,2.4,4.1,1.3,Iris-versicolor
|
1650 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
1651 |
+
5.6,2.4,3.9,1.1,Iris-versicolor
|
1652 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
1653 |
+
6.2,2.9,4.5,1.4,Iris-versicolor
|
1654 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1655 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1656 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
1657 |
+
6.8,2.8,4.8,1.5,Iris-versicolor
|
1658 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
1659 |
+
5.7,3.1,4.6,1.7,Iris-versicolor
|
1660 |
+
6.2,3.3,4.8,1.7,Iris-versicolor
|
1661 |
+
6.3,2.8,4.5,1.3,Iris-versicolor
|
1662 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
1663 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
1664 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
1665 |
+
6.4,2.9,4.3,1.4,Iris-versicolor
|
1666 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1667 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1668 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
1669 |
+
6.3,2.5,4.8,1.5,Iris-versicolor
|
1670 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1671 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
1672 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1673 |
+
6.6,2.9,4.8,1.6,Iris-versicolor
|
1674 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
1675 |
+
5.7,3.0,4.3,1.3,Iris-versicolor
|
1676 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1677 |
+
5.7,3.0,4.3,1.2,Iris-versicolor
|
1678 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1679 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
1680 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
1681 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
1682 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1683 |
+
5.5,2.4,3.6,1.0,Iris-versicolor
|
1684 |
+
6.5,2.8,4.5,1.5,Iris-versicolor
|
1685 |
+
5.7,2.5,3.9,1.1,Iris-versicolor
|
1686 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1687 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1688 |
+
5.2,2.3,3.6,1.0,Iris-versicolor
|
1689 |
+
6.2,2.6,5.0,1.5,Iris-versicolor
|
1690 |
+
5.0,2.3,3.2,1.0,Iris-versicolor
|
1691 |
+
6.3,2.4,4.6,1.4,Iris-versicolor
|
1692 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
1693 |
+
6.2,3.3,4.5,1.6,Iris-versicolor
|
1694 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
1695 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1696 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
1697 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1698 |
+
5.8,2.3,3.9,1.0,Iris-versicolor
|
1699 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1700 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1701 |
+
5.8,2.6,3.9,1.1,Iris-versicolor
|
1702 |
+
5.6,3.0,4.3,1.3,Iris-versicolor
|
1703 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1704 |
+
6.6,2.8,4.5,1.4,Iris-versicolor
|
1705 |
+
6.5,3.1,4.6,1.5,Iris-versicolor
|
1706 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1707 |
+
5.0,2.0,3.6,1.0,Iris-versicolor
|
1708 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
1709 |
+
6.0,3.4,4.5,1.7,Iris-versicolor
|
1710 |
+
6.8,2.9,4.8,1.6,Iris-versicolor
|
1711 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1712 |
+
6.3,2.4,4.8,1.4,Iris-versicolor
|
1713 |
+
6.6,3.1,4.5,1.4,Iris-versicolor
|
1714 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1715 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1716 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
1717 |
+
5.4,2.4,3.8,1.0,Iris-versicolor
|
1718 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
1719 |
+
5.8,2.7,3.9,1.1,Iris-versicolor
|
1720 |
+
6.8,3.1,5.0,1.6,Iris-versicolor
|
1721 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
1722 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1723 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1724 |
+
6.0,3.4,4.5,1.7,Iris-versicolor
|
1725 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1726 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1727 |
+
5.7,3.0,4.5,1.5,Iris-versicolor
|
1728 |
+
5.8,3.0,4.3,1.4,Iris-versicolor
|
1729 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
1730 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1731 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1732 |
+
5.7,3.0,3.9,1.3,Iris-versicolor
|
1733 |
+
5.7,2.3,4.1,1.3,Iris-versicolor
|
1734 |
+
5.5,2.6,4.3,1.3,Iris-versicolor
|
1735 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
1736 |
+
5.6,2.7,4.1,1.3,Iris-versicolor
|
1737 |
+
6.0,2.8,4.8,1.6,Iris-versicolor
|
1738 |
+
6.2,3.3,4.8,1.7,Iris-versicolor
|
1739 |
+
6.3,2.4,4.8,1.5,Iris-versicolor
|
1740 |
+
6.1,2.2,4.1,1.1,Iris-versicolor
|
1741 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
1742 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
1743 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1744 |
+
6.3,2.4,4.8,1.5,Iris-versicolor
|
1745 |
+
6.8,3.1,4.5,1.4,Iris-versicolor
|
1746 |
+
5.7,2.5,3.6,1.0,Iris-versicolor
|
1747 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1748 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
1749 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
1750 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
1751 |
+
5.8,3.2,4.8,1.7,Iris-versicolor
|
1752 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
1753 |
+
6.3,2.3,4.3,1.3,Iris-versicolor
|
1754 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
1755 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1756 |
+
5.2,2.4,3.6,1.0,Iris-versicolor
|
1757 |
+
5.6,2.9,3.8,1.3,Iris-versicolor
|
1758 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
1759 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1760 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
1761 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
1762 |
+
6.0,2.3,4.3,1.3,Iris-versicolor
|
1763 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1764 |
+
6.9,3.1,4.8,1.4,Iris-versicolor
|
1765 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1766 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1767 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1768 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
1769 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1770 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1771 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
1772 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
1773 |
+
5.6,3.0,4.1,1.4,Iris-versicolor
|
1774 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1775 |
+
5.5,2.6,4.3,1.2,Iris-versicolor
|
1776 |
+
5.9,3.2,4.8,1.7,Iris-versicolor
|
1777 |
+
5.6,2.7,4.3,1.3,Iris-versicolor
|
1778 |
+
5.7,2.5,3.8,1.0,Iris-versicolor
|
1779 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
1780 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
1781 |
+
5.8,2.8,3.8,1.2,Iris-versicolor
|
1782 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1783 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
1784 |
+
5.4,2.4,3.8,1.0,Iris-versicolor
|
1785 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
1786 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1787 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1788 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
1789 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1790 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
1791 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
1792 |
+
6.6,2.8,4.6,1.4,Iris-versicolor
|
1793 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
1794 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
1795 |
+
5.8,2.8,3.9,1.3,Iris-versicolor
|
1796 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1797 |
+
6.1,2.8,4.6,1.3,Iris-versicolor
|
1798 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
1799 |
+
5.8,2.7,3.9,1.0,Iris-versicolor
|
1800 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1801 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
1802 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1803 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1804 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
1805 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
1806 |
+
5.6,2.4,3.9,1.1,Iris-versicolor
|
1807 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
1808 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1809 |
+
6.4,2.9,4.3,1.3,Iris-versicolor
|
1810 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
1811 |
+
5.6,3.0,4.3,1.3,Iris-versicolor
|
1812 |
+
6.7,3.1,4.8,1.7,Iris-versicolor
|
1813 |
+
5.2,2.4,3.4,1.0,Iris-versicolor
|
1814 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
1815 |
+
5.5,2.6,4.3,1.2,Iris-versicolor
|
1816 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
1817 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
1818 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1819 |
+
6.8,3.0,5.0,1.7,Iris-versicolor
|
1820 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1821 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1822 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
1823 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1824 |
+
6.6,3.1,4.6,1.5,Iris-versicolor
|
1825 |
+
5.7,3.0,4.3,1.2,Iris-versicolor
|
1826 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
1827 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
1828 |
+
4.9,2.2,3.4,1.0,Iris-versicolor
|
1829 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
1830 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
1831 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
1832 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1833 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1834 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
1835 |
+
6.2,2.7,4.8,1.4,Iris-versicolor
|
1836 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
1837 |
+
5.8,2.7,3.9,1.0,Iris-versicolor
|
1838 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1839 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
1840 |
+
5.0,2.4,3.2,1.0,Iris-versicolor
|
1841 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1842 |
+
5.0,2.3,3.4,1.0,Iris-versicolor
|
1843 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
1844 |
+
6.4,2.9,4.3,1.4,Iris-versicolor
|
1845 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1846 |
+
6.3,2.4,4.8,1.4,Iris-versicolor
|
1847 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1848 |
+
5.6,3.0,4.3,1.4,Iris-versicolor
|
1849 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
1850 |
+
5.8,2.8,3.9,1.3,Iris-versicolor
|
1851 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
1852 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1853 |
+
6.4,2.9,4.5,1.4,Iris-versicolor
|
1854 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
1855 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1856 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
1857 |
+
5.7,2.9,3.8,1.3,Iris-versicolor
|
1858 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
1859 |
+
5.6,2.7,4.3,1.3,Iris-versicolor
|
1860 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1861 |
+
6.3,2.4,4.8,1.4,Iris-versicolor
|
1862 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
1863 |
+
5.5,2.5,4.1,1.3,Iris-versicolor
|
1864 |
+
6.9,3.1,5.0,1.5,Iris-versicolor
|
1865 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
1866 |
+
6.3,2.3,4.6,1.5,Iris-versicolor
|
1867 |
+
5.6,3.0,4.1,1.4,Iris-versicolor
|
1868 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
1869 |
+
6.4,3.2,4.6,1.5,Iris-versicolor
|
1870 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1871 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
1872 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
1873 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
1874 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
1875 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
1876 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1877 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
1878 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
1879 |
+
5.8,2.8,4.6,1.4,Iris-versicolor
|
1880 |
+
6.4,2.9,4.5,1.4,Iris-versicolor
|
1881 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1882 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1883 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
1884 |
+
6.3,2.4,4.6,1.4,Iris-versicolor
|
1885 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
1886 |
+
6.2,2.2,4.1,1.1,Iris-versicolor
|
1887 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
1888 |
+
6.0,3.4,4.5,1.7,Iris-versicolor
|
1889 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
1890 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1891 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
1892 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
1893 |
+
5.6,2.6,4.3,1.2,Iris-versicolor
|
1894 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
1895 |
+
6.1,2.6,5.0,1.6,Iris-versicolor
|
1896 |
+
6.8,3.0,5.0,1.7,Iris-versicolor
|
1897 |
+
6.1,2.8,4.6,1.3,Iris-versicolor
|
1898 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1899 |
+
7.0,3.2,4.6,1.4,Iris-versicolor
|
1900 |
+
4.9,2.2,3.4,1.0,Iris-versicolor
|
1901 |
+
5.7,2.6,3.6,1.0,Iris-versicolor
|
1902 |
+
5.2,2.3,3.4,1.0,Iris-versicolor
|
1903 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1904 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
1905 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
1906 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
1907 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1908 |
+
6.2,2.6,5.0,1.5,Iris-versicolor
|
1909 |
+
5.8,2.8,4.5,1.4,Iris-versicolor
|
1910 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1911 |
+
5.0,2.3,3.4,1.0,Iris-versicolor
|
1912 |
+
6.8,3.1,5.0,1.6,Iris-versicolor
|
1913 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1914 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
1915 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
1916 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1917 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1918 |
+
6.2,2.2,4.1,1.1,Iris-versicolor
|
1919 |
+
6.1,2.6,5.0,1.6,Iris-versicolor
|
1920 |
+
5.0,2.4,3.1,1.0,Iris-versicolor
|
1921 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
1922 |
+
6.1,2.2,4.1,1.0,Iris-versicolor
|
1923 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1924 |
+
6.1,2.2,4.3,1.3,Iris-versicolor
|
1925 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
1926 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1927 |
+
6.8,3.1,5.0,1.7,Iris-versicolor
|
1928 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
1929 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
1930 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
1931 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
1932 |
+
5.8,3.1,4.6,1.7,Iris-versicolor
|
1933 |
+
5.5,2.5,3.9,1.3,Iris-versicolor
|
1934 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
1935 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
1936 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
1937 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
1938 |
+
6.9,3.1,4.6,1.4,Iris-versicolor
|
1939 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
1940 |
+
5.5,2.7,4.1,1.4,Iris-versicolor
|
1941 |
+
6.2,2.9,4.6,1.4,Iris-versicolor
|
1942 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1943 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
1944 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1945 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
1946 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1947 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
1948 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
1949 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
1950 |
+
6.7,3.1,4.8,1.6,Iris-versicolor
|
1951 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1952 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1953 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
1954 |
+
6.1,2.8,4.1,1.4,Iris-versicolor
|
1955 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
1956 |
+
5.8,2.8,4.1,1.1,Iris-versicolor
|
1957 |
+
6.1,2.8,3.9,1.3,Iris-versicolor
|
1958 |
+
6.2,2.9,4.6,1.4,Iris-versicolor
|
1959 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
1960 |
+
5.3,2.2,3.8,1.2,Iris-versicolor
|
1961 |
+
5.2,2.3,3.4,1.0,Iris-versicolor
|
1962 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
1963 |
+
5.8,3.0,4.3,1.4,Iris-versicolor
|
1964 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
1965 |
+
5.8,2.2,4.3,1.4,Iris-versicolor
|
1966 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
1967 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
1968 |
+
5.5,2.6,4.3,1.3,Iris-versicolor
|
1969 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
1970 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
1971 |
+
5.5,2.6,4.5,1.2,Iris-versicolor
|
1972 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
1973 |
+
6.2,2.9,4.3,1.4,Iris-versicolor
|
1974 |
+
6.1,2.9,4.8,1.4,Iris-versicolor
|
1975 |
+
5.3,2.6,3.9,1.4,Iris-versicolor
|
1976 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
1977 |
+
5.6,2.8,4.1,1.3,Iris-versicolor
|
1978 |
+
5.6,2.9,3.8,1.3,Iris-versicolor
|
1979 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1980 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1981 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
1982 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
1983 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1984 |
+
5.5,2.5,4.1,1.3,Iris-versicolor
|
1985 |
+
5.8,2.7,3.9,1.1,Iris-versicolor
|
1986 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
1987 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
1988 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
1989 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
1990 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
1991 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
1992 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
1993 |
+
5.0,2.4,3.4,1.0,Iris-versicolor
|
1994 |
+
5.0,2.4,3.1,1.0,Iris-versicolor
|
1995 |
+
6.0,2.8,3.9,1.3,Iris-versicolor
|
1996 |
+
6.7,3.1,4.6,1.4,Iris-versicolor
|
1997 |
+
5.2,2.7,3.9,1.4,Iris-versicolor
|
1998 |
+
5.8,2.8,4.5,1.4,Iris-versicolor
|
1999 |
+
5.9,3.2,4.8,1.7,Iris-versicolor
|
2000 |
+
5.9,3.1,4.3,1.5,Iris-versicolor
|
2001 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
2002 |
+
6.6,3.3,5.7,2.1,Iris-virginica
|
2003 |
+
6.3,2.8,5.5,2.1,Iris-virginica
|
2004 |
+
6.7,3.1,5.5,2.3,Iris-virginica
|
2005 |
+
6.4,3.4,5.5,2.4,Iris-virginica
|
2006 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
2007 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2008 |
+
6.5,3.3,5.5,2.2,Iris-virginica
|
2009 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2010 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2011 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
2012 |
+
6.0,3.0,5.3,1.8,Iris-virginica
|
2013 |
+
7.2,2.9,6.0,1.7,Iris-virginica
|
2014 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2015 |
+
6.7,3.1,5.5,2.3,Iris-virginica
|
2016 |
+
7.2,3.6,6.0,2.5,Iris-virginica
|
2017 |
+
5.8,2.6,5.0,2.1,Iris-virginica
|
2018 |
+
6.5,3.2,5.2,2.1,Iris-virginica
|
2019 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
2020 |
+
6.5,3.0,5.5,2.1,Iris-virginica
|
2021 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2022 |
+
6.8,3.2,5.7,2.2,Iris-virginica
|
2023 |
+
7.6,2.8,6.4,2.0,Iris-virginica
|
2024 |
+
6.2,3.4,5.5,2.3,Iris-virginica
|
2025 |
+
7.2,3.0,5.9,1.6,Iris-virginica
|
2026 |
+
6.8,3.0,5.2,2.3,Iris-virginica
|
2027 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
2028 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
2029 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
2030 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2031 |
+
6.3,2.7,5.2,1.8,Iris-virginica
|
2032 |
+
6.6,3.0,5.5,2.0,Iris-virginica
|
2033 |
+
6.0,2.9,5.0,1.8,Iris-virginica
|
2034 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2035 |
+
6.1,2.2,5.0,1.6,Iris-virginica
|
2036 |
+
5.6,2.8,4.8,2.0,Iris-virginica
|
2037 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
2038 |
+
6.7,3.3,5.7,2.2,Iris-virginica
|
2039 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
2040 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
2041 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
2042 |
+
6.9,3.1,5.5,2.2,Iris-virginica
|
2043 |
+
7.6,3.5,6.2,1.9,Iris-virginica
|
2044 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
2045 |
+
6.8,3.1,5.5,2.4,Iris-virginica
|
2046 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
2047 |
+
7.2,2.9,6.0,1.7,Iris-virginica
|
2048 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2049 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
2050 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2051 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
2052 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2053 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
2054 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
2055 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
2056 |
+
6.3,2.4,5.0,1.8,Iris-virginica
|
2057 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2058 |
+
5.0,2.4,4.6,1.7,Iris-virginica
|
2059 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2060 |
+
6.8,3.1,5.3,2.2,Iris-virginica
|
2061 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
2062 |
+
7.5,2.8,6.2,2.0,Iris-virginica
|
2063 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2064 |
+
6.4,3.2,5.2,2.2,Iris-virginica
|
2065 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2066 |
+
7.6,3.0,6.6,2.0,Iris-virginica
|
2067 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
2068 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2069 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
2070 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
2071 |
+
7.5,2.8,6.0,2.0,Iris-virginica
|
2072 |
+
7.3,2.8,6.0,2.0,Iris-virginica
|
2073 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
2074 |
+
7.5,3.0,6.6,2.0,Iris-virginica
|
2075 |
+
6.8,3.3,5.7,2.2,Iris-virginica
|
2076 |
+
6.5,3.3,5.9,2.5,Iris-virginica
|
2077 |
+
6.9,3.1,5.5,2.1,Iris-virginica
|
2078 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
2079 |
+
6.3,2.7,5.2,1.8,Iris-virginica
|
2080 |
+
6.4,2.9,5.7,2.2,Iris-virginica
|
2081 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2082 |
+
6.2,2.6,5.3,1.5,Iris-virginica
|
2083 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
2084 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
2085 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
2086 |
+
5.8,2.8,5.2,2.2,Iris-virginica
|
2087 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2088 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2089 |
+
6.4,2.7,5.2,1.8,Iris-virginica
|
2090 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
2091 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
2092 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2093 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
2094 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2095 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2096 |
+
6.1,2.7,5.0,1.9,Iris-virginica
|
2097 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
2098 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2099 |
+
6.8,3.1,5.2,2.3,Iris-virginica
|
2100 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
2101 |
+
5.9,2.5,5.0,2.0,Iris-virginica
|
2102 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2103 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2104 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
2105 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2106 |
+
6.8,3.1,5.3,2.1,Iris-virginica
|
2107 |
+
6.3,3.4,5.7,2.3,Iris-virginica
|
2108 |
+
7.3,2.8,6.2,1.9,Iris-virginica
|
2109 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2110 |
+
6.4,3.4,5.5,2.4,Iris-virginica
|
2111 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
2112 |
+
5.7,2.7,5.0,1.9,Iris-virginica
|
2113 |
+
6.1,2.3,5.0,1.6,Iris-virginica
|
2114 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
2115 |
+
6.9,3.1,5.2,2.2,Iris-virginica
|
2116 |
+
6.6,2.5,5.5,1.8,Iris-virginica
|
2117 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2118 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
2119 |
+
5.6,2.7,5.0,1.9,Iris-virginica
|
2120 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
2121 |
+
5.9,2.5,5.0,2.0,Iris-virginica
|
2122 |
+
7.7,2.8,6.7,2.2,Iris-virginica
|
2123 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2124 |
+
6.3,3.4,5.9,2.4,Iris-virginica
|
2125 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
2126 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2127 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2128 |
+
7.2,3.1,6.0,1.7,Iris-virginica
|
2129 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2130 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
2131 |
+
7.2,3.1,6.0,1.9,Iris-virginica
|
2132 |
+
5.8,2.8,5.2,2.4,Iris-virginica
|
2133 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
2134 |
+
7.7,3.7,6.6,2.1,Iris-virginica
|
2135 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
2136 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
2137 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
2138 |
+
7.2,3.0,5.9,1.6,Iris-virginica
|
2139 |
+
6.2,2.7,5.2,1.7,Iris-virginica
|
2140 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
2141 |
+
6.4,2.9,5.5,2.0,Iris-virginica
|
2142 |
+
6.2,2.8,5.3,2.2,Iris-virginica
|
2143 |
+
6.3,3.3,6.0,2.5,Iris-virginica
|
2144 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
2145 |
+
5.8,2.6,5.0,2.0,Iris-virginica
|
2146 |
+
7.4,2.9,6.4,1.9,Iris-virginica
|
2147 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2148 |
+
7.2,2.9,6.2,1.7,Iris-virginica
|
2149 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2150 |
+
6.3,2.8,5.5,2.1,Iris-virginica
|
2151 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2152 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
2153 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
2154 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
2155 |
+
6.1,3.0,4.8,1.8,Iris-virginica
|
2156 |
+
6.3,2.9,5.5,1.9,Iris-virginica
|
2157 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
2158 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2159 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
2160 |
+
6.2,3.1,5.2,1.8,Iris-virginica
|
2161 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2162 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2163 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2164 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
2165 |
+
7.2,2.9,6.2,2.0,Iris-virginica
|
2166 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2167 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
2168 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2169 |
+
6.3,3.1,5.5,1.8,Iris-virginica
|
2170 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
2171 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2172 |
+
6.4,3.3,5.9,2.5,Iris-virginica
|
2173 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
2174 |
+
7.4,3.6,6.2,2.0,Iris-virginica
|
2175 |
+
6.8,3.1,5.7,2.2,Iris-virginica
|
2176 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
2177 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
2178 |
+
5.7,2.7,5.0,1.9,Iris-virginica
|
2179 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2180 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
2181 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2182 |
+
6.9,3.1,5.3,2.3,Iris-virginica
|
2183 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2184 |
+
7.2,3.6,6.2,2.4,Iris-virginica
|
2185 |
+
6.4,3.4,5.7,2.3,Iris-virginica
|
2186 |
+
6.3,2.8,5.0,1.7,Iris-virginica
|
2187 |
+
6.1,2.9,5.0,1.8,Iris-virginica
|
2188 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
2189 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
2190 |
+
5.8,2.8,5.2,2.4,Iris-virginica
|
2191 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2192 |
+
7.3,2.9,6.0,1.8,Iris-virginica
|
2193 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2194 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
2195 |
+
6.5,3.4,5.7,2.3,Iris-virginica
|
2196 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
2197 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2198 |
+
6.8,3.0,5.5,2.0,Iris-virginica
|
2199 |
+
6.6,3.1,5.7,2.3,Iris-virginica
|
2200 |
+
7.7,3.0,6.4,2.1,Iris-virginica
|
2201 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2202 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2203 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2204 |
+
6.8,3.1,5.3,2.2,Iris-virginica
|
2205 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
2206 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
2207 |
+
5.6,2.7,5.0,1.9,Iris-virginica
|
2208 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
2209 |
+
7.2,2.9,6.0,2.0,Iris-virginica
|
2210 |
+
6.6,3.2,5.3,2.0,Iris-virginica
|
2211 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2212 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
2213 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
2214 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
2215 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2216 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2217 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2218 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
2219 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
2220 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
2221 |
+
6.8,3.3,5.7,2.1,Iris-virginica
|
2222 |
+
7.2,2.9,6.2,2.0,Iris-virginica
|
2223 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
2224 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2225 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
2226 |
+
6.1,3.0,4.8,1.8,Iris-virginica
|
2227 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
2228 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2229 |
+
6.5,3.3,5.9,2.5,Iris-virginica
|
2230 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2231 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2232 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2233 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
2234 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2235 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2236 |
+
7.0,3.1,5.5,2.0,Iris-virginica
|
2237 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
2238 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
2239 |
+
6.0,2.6,5.3,1.6,Iris-virginica
|
2240 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
2241 |
+
7.2,3.0,5.9,1.8,Iris-virginica
|
2242 |
+
6.0,3.0,5.0,1.8,Iris-virginica
|
2243 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2244 |
+
6.8,3.1,5.3,2.1,Iris-virginica
|
2245 |
+
6.6,3.3,5.9,2.5,Iris-virginica
|
2246 |
+
7.2,3.0,5.9,1.7,Iris-virginica
|
2247 |
+
6.2,3.0,5.0,1.8,Iris-virginica
|
2248 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
2249 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
2250 |
+
6.1,2.4,5.0,1.6,Iris-virginica
|
2251 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
2252 |
+
6.4,3.4,5.5,2.2,Iris-virginica
|
2253 |
+
6.3,3.3,5.5,2.3,Iris-virginica
|
2254 |
+
7.7,2.7,6.7,2.2,Iris-virginica
|
2255 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
2256 |
+
6.0,2.6,5.3,1.6,Iris-virginica
|
2257 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
2258 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
2259 |
+
6.3,3.1,5.5,1.8,Iris-virginica
|
2260 |
+
6.5,3.0,5.5,2.1,Iris-virginica
|
2261 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
2262 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
2263 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
2264 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2265 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2266 |
+
6.4,2.9,5.5,2.0,Iris-virginica
|
2267 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2268 |
+
7.4,2.8,6.0,1.9,Iris-virginica
|
2269 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2270 |
+
6.8,3.1,5.7,2.3,Iris-virginica
|
2271 |
+
7.7,2.9,6.6,2.0,Iris-virginica
|
2272 |
+
6.7,3.0,5.5,2.0,Iris-virginica
|
2273 |
+
7.7,3.0,6.4,2.1,Iris-virginica
|
2274 |
+
6.6,2.5,5.7,1.7,Iris-virginica
|
2275 |
+
6.8,3.1,5.5,2.2,Iris-virginica
|
2276 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2277 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
2278 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2279 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2280 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
2281 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2282 |
+
7.5,2.9,6.2,2.0,Iris-virginica
|
2283 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2284 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2285 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2286 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2287 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
2288 |
+
6.8,3.3,5.9,2.4,Iris-virginica
|
2289 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2290 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
2291 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
2292 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
2293 |
+
6.0,2.6,5.3,1.6,Iris-virginica
|
2294 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
2295 |
+
6.8,3.3,5.7,2.4,Iris-virginica
|
2296 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
2297 |
+
5.8,2.6,5.0,2.0,Iris-virginica
|
2298 |
+
7.7,2.8,6.7,2.2,Iris-virginica
|
2299 |
+
6.3,3.1,5.5,1.8,Iris-virginica
|
2300 |
+
5.9,2.5,5.0,2.0,Iris-virginica
|
2301 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2302 |
+
6.1,2.4,5.0,1.6,Iris-virginica
|
2303 |
+
7.1,3.4,5.9,2.4,Iris-virginica
|
2304 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2305 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
2306 |
+
6.3,2.8,5.5,2.1,Iris-virginica
|
2307 |
+
7.4,3.0,6.4,2.0,Iris-virginica
|
2308 |
+
7.3,3.4,6.2,1.9,Iris-virginica
|
2309 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2310 |
+
7.3,2.8,6.2,1.9,Iris-virginica
|
2311 |
+
7.2,3.6,6.2,2.4,Iris-virginica
|
2312 |
+
6.3,2.8,4.8,1.8,Iris-virginica
|
2313 |
+
5.9,2.8,5.2,2.3,Iris-virginica
|
2314 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
2315 |
+
6.0,2.8,5.0,1.9,Iris-virginica
|
2316 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
2317 |
+
6.7,3.2,5.9,2.3,Iris-virginica
|
2318 |
+
7.7,3.3,6.6,2.0,Iris-virginica
|
2319 |
+
5.8,3.0,5.0,1.9,Iris-virginica
|
2320 |
+
7.6,3.5,6.2,1.9,Iris-virginica
|
2321 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2322 |
+
6.6,3.3,5.5,2.0,Iris-virginica
|
2323 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2324 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
2325 |
+
6.7,3.0,5.5,2.0,Iris-virginica
|
2326 |
+
6.1,3.0,4.8,1.8,Iris-virginica
|
2327 |
+
6.3,2.8,4.8,1.8,Iris-virginica
|
2328 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2329 |
+
7.2,3.5,6.0,2.0,Iris-virginica
|
2330 |
+
5.8,2.2,5.0,1.5,Iris-virginica
|
2331 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2332 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2333 |
+
6.3,2.8,5.0,1.6,Iris-virginica
|
2334 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2335 |
+
6.8,3.3,5.7,2.4,Iris-virginica
|
2336 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
2337 |
+
6.8,3.1,5.5,2.1,Iris-virginica
|
2338 |
+
7.6,3.5,6.2,1.9,Iris-virginica
|
2339 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
2340 |
+
6.8,3.3,5.9,2.2,Iris-virginica
|
2341 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2342 |
+
5.1,2.5,4.6,1.7,Iris-virginica
|
2343 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
2344 |
+
5.8,2.7,5.2,2.0,Iris-virginica
|
2345 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2346 |
+
6.3,2.8,5.0,1.8,Iris-virginica
|
2347 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
2348 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
2349 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
2350 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
2351 |
+
7.5,3.4,6.2,1.9,Iris-virginica
|
2352 |
+
7.0,3.3,5.9,2.3,Iris-virginica
|
2353 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2354 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
2355 |
+
7.0,3.1,5.5,2.0,Iris-virginica
|
2356 |
+
6.6,3.1,5.7,2.3,Iris-virginica
|
2357 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
2358 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2359 |
+
6.4,3.4,5.7,2.3,Iris-virginica
|
2360 |
+
6.9,3.1,5.5,2.2,Iris-virginica
|
2361 |
+
5.8,2.6,5.0,2.2,Iris-virginica
|
2362 |
+
6.3,3.3,5.3,2.3,Iris-virginica
|
2363 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2364 |
+
6.6,3.3,5.5,2.0,Iris-virginica
|
2365 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
2366 |
+
6.9,3.1,5.5,2.2,Iris-virginica
|
2367 |
+
7.5,2.9,6.4,2.0,Iris-virginica
|
2368 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
2369 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2370 |
+
7.7,3.0,6.6,2.1,Iris-virginica
|
2371 |
+
6.4,2.9,5.5,2.1,Iris-virginica
|
2372 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2373 |
+
6.8,3.3,5.7,2.1,Iris-virginica
|
2374 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2375 |
+
6.3,3.4,5.5,2.4,Iris-virginica
|
2376 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
2377 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
2378 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2379 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2380 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
2381 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2382 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
2383 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2384 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
2385 |
+
6.2,3.0,5.2,1.8,Iris-virginica
|
2386 |
+
7.2,3.1,5.9,2.0,Iris-virginica
|
2387 |
+
6.1,2.8,4.8,1.8,Iris-virginica
|
2388 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
2389 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
2390 |
+
6.6,3.3,5.9,2.5,Iris-virginica
|
2391 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
2392 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2393 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
2394 |
+
7.1,3.4,5.9,2.0,Iris-virginica
|
2395 |
+
6.0,2.8,5.0,1.9,Iris-virginica
|
2396 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2397 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
2398 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2399 |
+
6.3,2.7,4.8,1.8,Iris-virginica
|
2400 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
2401 |
+
6.8,3.1,5.5,2.2,Iris-virginica
|
2402 |
+
7.0,3.1,5.5,2.0,Iris-virginica
|
2403 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2404 |
+
6.7,3.1,5.3,2.3,Iris-virginica
|
2405 |
+
6.7,3.1,5.5,2.3,Iris-virginica
|
2406 |
+
6.3,2.6,5.7,1.6,Iris-virginica
|
2407 |
+
7.5,3.0,6.0,2.2,Iris-virginica
|
2408 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2409 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
2410 |
+
6.8,3.3,5.7,2.1,Iris-virginica
|
2411 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
2412 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
2413 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
2414 |
+
6.2,2.9,4.8,1.8,Iris-virginica
|
2415 |
+
6.5,3.0,5.3,2.0,Iris-virginica
|
2416 |
+
6.8,3.1,5.3,2.1,Iris-virginica
|
2417 |
+
6.0,2.9,5.0,1.8,Iris-virginica
|
2418 |
+
6.3,2.7,5.3,1.7,Iris-virginica
|
2419 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2420 |
+
6.4,3.4,5.7,2.3,Iris-virginica
|
2421 |
+
6.6,3.0,5.5,2.0,Iris-virginica
|
2422 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2423 |
+
7.4,2.8,6.2,1.9,Iris-virginica
|
2424 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2425 |
+
7.5,3.0,6.0,2.2,Iris-virginica
|
2426 |
+
7.4,2.9,6.4,1.9,Iris-virginica
|
2427 |
+
6.3,2.9,5.5,1.9,Iris-virginica
|
2428 |
+
6.4,2.9,5.7,2.2,Iris-virginica
|
2429 |
+
7.3,2.8,6.2,1.9,Iris-virginica
|
2430 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
2431 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2432 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2433 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2434 |
+
6.3,2.8,5.0,1.6,Iris-virginica
|
2435 |
+
6.4,3.2,5.2,2.2,Iris-virginica
|
2436 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2437 |
+
7.7,2.7,6.7,2.3,Iris-virginica
|
2438 |
+
5.6,2.8,4.8,2.0,Iris-virginica
|
2439 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2440 |
+
7.2,3.6,6.2,2.2,Iris-virginica
|
2441 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2442 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2443 |
+
5.8,2.7,5.0,1.9,Iris-virginica
|
2444 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
2445 |
+
6.8,3.1,5.3,2.2,Iris-virginica
|
2446 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
2447 |
+
6.0,3.0,5.0,1.8,Iris-virginica
|
2448 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2449 |
+
6.9,3.1,5.2,2.2,Iris-virginica
|
2450 |
+
6.6,3.0,5.5,2.0,Iris-virginica
|
2451 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2452 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2453 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
2454 |
+
5.9,2.5,5.0,2.0,Iris-virginica
|
2455 |
+
6.2,2.6,5.5,1.6,Iris-virginica
|
2456 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2457 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2458 |
+
7.5,2.8,6.2,2.0,Iris-virginica
|
2459 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2460 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
2461 |
+
6.3,2.3,5.3,1.7,Iris-virginica
|
2462 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
2463 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2464 |
+
6.2,3.4,5.3,2.3,Iris-virginica
|
2465 |
+
6.8,3.2,5.9,2.4,Iris-virginica
|
2466 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2467 |
+
6.8,3.1,5.7,2.3,Iris-virginica
|
2468 |
+
6.8,3.3,5.9,2.4,Iris-virginica
|
2469 |
+
6.8,3.1,5.3,2.1,Iris-virginica
|
2470 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2471 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
2472 |
+
5.8,2.6,5.0,2.1,Iris-virginica
|
2473 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
2474 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2475 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2476 |
+
6.2,3.0,5.0,1.8,Iris-virginica
|
2477 |
+
6.3,3.4,5.5,2.4,Iris-virginica
|
2478 |
+
5.9,2.8,5.2,2.3,Iris-virginica
|
2479 |
+
7.2,3.5,6.0,2.0,Iris-virginica
|
2480 |
+
7.7,2.9,6.6,2.0,Iris-virginica
|
2481 |
+
6.0,3.0,5.0,1.8,Iris-virginica
|
2482 |
+
7.2,3.5,6.2,2.1,Iris-virginica
|
2483 |
+
7.8,3.8,6.6,2.1,Iris-virginica
|
2484 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2485 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
2486 |
+
6.1,2.8,5.3,2.3,Iris-virginica
|
2487 |
+
6.3,2.6,5.2,1.9,Iris-virginica
|
2488 |
+
6.3,3.2,5.3,2.3,Iris-virginica
|
2489 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
2490 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
2491 |
+
7.5,3.0,6.6,2.0,Iris-virginica
|
2492 |
+
6.3,3.4,5.9,2.5,Iris-virginica
|
2493 |
+
6.0,2.9,5.0,1.8,Iris-virginica
|
2494 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
2495 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2496 |
+
7.1,3.0,5.7,2.1,Iris-virginica
|
2497 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
2498 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
2499 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2500 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2501 |
+
6.5,2.4,5.5,1.7,Iris-virginica
|
2502 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2503 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
2504 |
+
7.3,2.8,6.0,2.0,Iris-virginica
|
2505 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2506 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2507 |
+
6.7,3.3,5.7,2.2,Iris-virginica
|
2508 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
2509 |
+
6.2,2.5,5.0,1.9,Iris-virginica
|
2510 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
2511 |
+
6.3,2.7,5.3,1.7,Iris-virginica
|
2512 |
+
6.7,3.3,5.7,2.4,Iris-virginica
|
2513 |
+
7.5,2.8,6.6,2.0,Iris-virginica
|
2514 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
2515 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
2516 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
2517 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2518 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2519 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2520 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
2521 |
+
7.4,2.8,6.0,1.9,Iris-virginica
|
2522 |
+
6.3,3.4,5.5,2.3,Iris-virginica
|
2523 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
2524 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2525 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2526 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
2527 |
+
6.3,2.8,5.3,1.7,Iris-virginica
|
2528 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
2529 |
+
5.8,3.0,5.0,1.8,Iris-virginica
|
2530 |
+
6.3,3.3,5.3,2.3,Iris-virginica
|
2531 |
+
5.7,2.8,5.0,2.2,Iris-virginica
|
2532 |
+
7.5,3.6,6.4,2.3,Iris-virginica
|
2533 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
2534 |
+
6.8,3.0,5.5,2.0,Iris-virginica
|
2535 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2536 |
+
6.3,2.8,5.0,1.7,Iris-virginica
|
2537 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
2538 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2539 |
+
6.5,3.2,5.2,2.1,Iris-virginica
|
2540 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
2541 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2542 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
2543 |
+
6.8,3.2,5.9,2.4,Iris-virginica
|
2544 |
+
7.6,3.0,6.0,2.3,Iris-virginica
|
2545 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2546 |
+
6.9,3.1,5.2,2.3,Iris-virginica
|
2547 |
+
6.4,3.2,5.2,2.2,Iris-virginica
|
2548 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2549 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2550 |
+
6.9,3.1,5.5,2.1,Iris-virginica
|
2551 |
+
6.3,3.3,5.3,2.3,Iris-virginica
|
2552 |
+
6.4,3.0,5.3,2.0,Iris-virginica
|
2553 |
+
7.4,2.8,6.2,1.9,Iris-virginica
|
2554 |
+
6.1,2.3,5.0,1.6,Iris-virginica
|
2555 |
+
6.6,2.6,5.7,1.9,Iris-virginica
|
2556 |
+
6.2,2.5,5.0,1.9,Iris-virginica
|
2557 |
+
6.9,3.2,5.5,2.3,Iris-virginica
|
2558 |
+
5.1,2.5,4.6,1.7,Iris-virginica
|
2559 |
+
7.7,2.8,6.6,2.3,Iris-virginica
|
2560 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
2561 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
2562 |
+
7.5,2.7,6.4,2.0,Iris-virginica
|
2563 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
2564 |
+
6.1,2.2,5.0,1.6,Iris-virginica
|
2565 |
+
6.5,2.4,5.5,1.7,Iris-virginica
|
2566 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2567 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
2568 |
+
7.4,2.8,6.0,1.9,Iris-virginica
|
2569 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
2570 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2571 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2572 |
+
7.2,3.1,5.9,2.0,Iris-virginica
|
2573 |
+
7.5,2.8,6.4,2.0,Iris-virginica
|
2574 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
2575 |
+
6.1,2.8,5.3,2.3,Iris-virginica
|
2576 |
+
7.8,3.8,6.6,2.1,Iris-virginica
|
2577 |
+
7.7,2.8,6.7,2.2,Iris-virginica
|
2578 |
+
7.5,2.9,6.4,2.0,Iris-virginica
|
2579 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
2580 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2581 |
+
6.6,3.3,5.7,2.1,Iris-virginica
|
2582 |
+
5.3,2.6,4.8,1.8,Iris-virginica
|
2583 |
+
7.5,3.6,6.4,2.3,Iris-virginica
|
2584 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
2585 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
2586 |
+
6.0,2.8,5.0,1.9,Iris-virginica
|
2587 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2588 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
2589 |
+
5.8,3.0,5.0,1.8,Iris-virginica
|
2590 |
+
6.8,3.2,5.7,2.3,Iris-virginica
|
2591 |
+
6.3,2.8,5.0,1.8,Iris-virginica
|
2592 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
2593 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
2594 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2595 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
2596 |
+
6.4,2.9,5.7,2.1,Iris-virginica
|
2597 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2598 |
+
7.2,3.6,6.2,2.2,Iris-virginica
|
2599 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
2600 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
2601 |
+
6.1,2.8,4.8,1.8,Iris-virginica
|
2602 |
+
7.9,3.8,6.4,2.0,Iris-virginica
|
2603 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
2604 |
+
7.1,3.1,5.7,1.8,Iris-virginica
|
2605 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2606 |
+
7.7,2.7,6.7,2.1,Iris-virginica
|
2607 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
2608 |
+
7.4,3.6,6.0,2.0,Iris-virginica
|
2609 |
+
5.3,2.6,4.6,1.8,Iris-virginica
|
2610 |
+
7.0,3.1,5.9,2.2,Iris-virginica
|
2611 |
+
6.8,3.1,5.7,2.3,Iris-virginica
|
2612 |
+
6.3,2.8,5.3,1.8,Iris-virginica
|
2613 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2614 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
2615 |
+
6.9,3.0,5.7,2.1,Iris-virginica
|
2616 |
+
7.5,3.4,6.2,1.9,Iris-virginica
|
2617 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2618 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
2619 |
+
7.7,3.8,6.6,2.3,Iris-virginica
|
2620 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
2621 |
+
6.8,3.1,5.2,2.3,Iris-virginica
|
2622 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2623 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
2624 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2625 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2626 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2627 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
2628 |
+
7.2,3.1,6.0,2.0,Iris-virginica
|
2629 |
+
6.3,2.8,5.5,2.3,Iris-virginica
|
2630 |
+
7.7,3.0,6.6,2.1,Iris-virginica
|
2631 |
+
6.2,2.9,4.8,1.8,Iris-virginica
|
2632 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2633 |
+
7.4,2.8,6.2,1.9,Iris-virginica
|
2634 |
+
6.5,3.0,5.7,2.2,Iris-virginica
|
2635 |
+
7.6,2.9,6.4,2.0,Iris-virginica
|
2636 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2637 |
+
7.4,3.7,6.2,2.3,Iris-virginica
|
2638 |
+
6.7,3.1,5.5,2.3,Iris-virginica
|
2639 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2640 |
+
6.8,3.1,5.5,2.1,Iris-virginica
|
2641 |
+
7.3,3.3,6.0,1.8,Iris-virginica
|
2642 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2643 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
2644 |
+
6.3,2.8,4.8,1.8,Iris-virginica
|
2645 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
2646 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
2647 |
+
6.3,3.4,5.5,2.4,Iris-virginica
|
2648 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
2649 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2650 |
+
6.8,3.3,5.9,2.4,Iris-virginica
|
2651 |
+
7.6,2.8,6.4,2.0,Iris-virginica
|
2652 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
2653 |
+
6.8,3.1,5.5,2.3,Iris-virginica
|
2654 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2655 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2656 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2657 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
2658 |
+
5.8,2.8,5.2,2.4,Iris-virginica
|
2659 |
+
6.9,3.1,5.3,2.3,Iris-virginica
|
2660 |
+
5.3,2.6,4.6,1.8,Iris-virginica
|
2661 |
+
6.3,2.8,5.3,1.8,Iris-virginica
|
2662 |
+
6.7,3.3,5.7,2.2,Iris-virginica
|
2663 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
2664 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
2665 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2666 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2667 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2668 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
2669 |
+
7.7,2.8,6.7,2.0,Iris-virginica
|
2670 |
+
6.4,2.8,5.7,2.0,Iris-virginica
|
2671 |
+
6.2,3.4,5.3,2.3,Iris-virginica
|
2672 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2673 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
2674 |
+
6.5,3.2,5.2,2.1,Iris-virginica
|
2675 |
+
6.8,3.1,5.2,2.3,Iris-virginica
|
2676 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2677 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
2678 |
+
6.7,3.0,5.2,2.2,Iris-virginica
|
2679 |
+
6.4,2.8,5.7,2.0,Iris-virginica
|
2680 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
2681 |
+
6.7,3.0,5.5,2.0,Iris-virginica
|
2682 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2683 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
2684 |
+
7.0,3.2,5.9,2.2,Iris-virginica
|
2685 |
+
6.3,2.3,5.3,1.7,Iris-virginica
|
2686 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
2687 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2688 |
+
6.8,3.1,5.7,2.2,Iris-virginica
|
2689 |
+
6.3,2.8,5.3,1.7,Iris-virginica
|
2690 |
+
7.4,2.8,6.0,1.9,Iris-virginica
|
2691 |
+
7.7,2.9,6.6,2.0,Iris-virginica
|
2692 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2693 |
+
7.5,3.0,6.0,2.2,Iris-virginica
|
2694 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
2695 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
2696 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
2697 |
+
6.5,3.0,5.5,2.1,Iris-virginica
|
2698 |
+
6.9,3.0,5.7,2.1,Iris-virginica
|
2699 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
2700 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2701 |
+
7.2,3.1,6.0,1.7,Iris-virginica
|
2702 |
+
6.3,2.5,5.2,1.7,Iris-virginica
|
2703 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2704 |
+
6.2,2.9,4.8,1.8,Iris-virginica
|
2705 |
+
6.5,3.4,5.7,2.3,Iris-virginica
|
2706 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
2707 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
2708 |
+
6.6,2.5,5.7,1.7,Iris-virginica
|
2709 |
+
7.7,3.0,6.2,2.3,Iris-virginica
|
2710 |
+
6.1,2.9,4.8,1.8,Iris-virginica
|
2711 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2712 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
2713 |
+
6.1,2.8,4.8,1.8,Iris-virginica
|
2714 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2715 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2716 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
2717 |
+
6.9,3.1,5.5,2.1,Iris-virginica
|
2718 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
2719 |
+
7.8,3.8,6.6,2.1,Iris-virginica
|
2720 |
+
6.0,3.0,5.0,1.8,Iris-virginica
|
2721 |
+
6.8,3.3,5.7,2.2,Iris-virginica
|
2722 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
2723 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
2724 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2725 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
2726 |
+
6.1,2.3,5.0,1.6,Iris-virginica
|
2727 |
+
6.4,3.0,5.5,1.8,Iris-virginica
|
2728 |
+
6.4,2.8,5.5,2.0,Iris-virginica
|
2729 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
2730 |
+
6.3,2.8,4.8,1.8,Iris-virginica
|
2731 |
+
6.3,3.4,5.9,2.4,Iris-virginica
|
2732 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
2733 |
+
6.2,3.0,5.0,1.8,Iris-virginica
|
2734 |
+
6.9,3.1,5.2,2.2,Iris-virginica
|
2735 |
+
7.1,3.5,6.0,2.1,Iris-virginica
|
2736 |
+
6.7,3.3,5.7,2.5,Iris-virginica
|
2737 |
+
6.3,2.8,5.0,1.7,Iris-virginica
|
2738 |
+
5.3,2.6,4.8,1.8,Iris-virginica
|
2739 |
+
7.7,2.7,6.7,2.1,Iris-virginica
|
2740 |
+
6.8,3.1,5.5,2.1,Iris-virginica
|
2741 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2742 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2743 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
2744 |
+
7.7,2.8,6.7,2.1,Iris-virginica
|
2745 |
+
6.5,3.3,5.9,2.5,Iris-virginica
|
2746 |
+
7.1,3.4,5.9,2.0,Iris-virginica
|
2747 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
2748 |
+
6.6,3.0,5.5,2.0,Iris-virginica
|
2749 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
2750 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
2751 |
+
6.9,3.2,5.5,2.3,Iris-virginica
|
2752 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
2753 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2754 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
2755 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2756 |
+
6.8,3.1,5.7,2.2,Iris-virginica
|
2757 |
+
6.6,3.0,5.7,2.3,Iris-virginica
|
2758 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2759 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
2760 |
+
6.3,2.5,5.2,1.9,Iris-virginica
|
2761 |
+
7.4,2.8,6.2,1.9,Iris-virginica
|
2762 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2763 |
+
6.5,3.0,5.5,2.1,Iris-virginica
|
2764 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
2765 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
2766 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
2767 |
+
6.3,3.4,5.5,2.4,Iris-virginica
|
2768 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
2769 |
+
6.0,2.3,5.2,1.5,Iris-virginica
|
2770 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
2771 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
2772 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
2773 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
2774 |
+
5.8,3.0,5.0,1.8,Iris-virginica
|
2775 |
+
6.7,3.1,5.7,2.4,Iris-virginica
|
2776 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2777 |
+
7.3,2.9,6.4,1.9,Iris-virginica
|
2778 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
2779 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
2780 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2781 |
+
6.2,2.8,5.3,2.2,Iris-virginica
|
2782 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
2783 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2784 |
+
6.9,3.1,5.5,2.1,Iris-virginica
|
2785 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2786 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
2787 |
+
7.3,3.6,6.2,2.4,Iris-virginica
|
2788 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
2789 |
+
7.0,3.0,5.7,2.1,Iris-virginica
|
2790 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
2791 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2792 |
+
6.3,2.8,5.0,1.7,Iris-virginica
|
2793 |
+
7.3,3.3,6.0,1.8,Iris-virginica
|
2794 |
+
7.6,3.0,6.6,2.0,Iris-virginica
|
2795 |
+
6.4,2.9,5.7,2.2,Iris-virginica
|
2796 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
2797 |
+
6.0,2.5,5.0,2.0,Iris-virginica
|
2798 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2799 |
+
7.1,3.0,5.9,2.0,Iris-virginica
|
2800 |
+
7.7,3.0,6.4,2.1,Iris-virginica
|
2801 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
2802 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2803 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
2804 |
+
6.6,3.3,5.5,2.0,Iris-virginica
|
2805 |
+
6.3,2.8,5.5,2.3,Iris-virginica
|
2806 |
+
7.6,2.8,6.4,2.0,Iris-virginica
|
2807 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2808 |
+
7.0,3.0,5.7,2.1,Iris-virginica
|
2809 |
+
6.7,3.3,5.7,2.1,Iris-virginica
|
2810 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2811 |
+
6.3,2.5,5.2,1.7,Iris-virginica
|
2812 |
+
6.1,3.0,4.8,1.8,Iris-virginica
|
2813 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
2814 |
+
7.5,3.0,6.6,2.0,Iris-virginica
|
2815 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
2816 |
+
6.6,3.3,5.5,2.0,Iris-virginica
|
2817 |
+
7.7,3.0,6.2,2.3,Iris-virginica
|
2818 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2819 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2820 |
+
6.9,3.1,5.2,2.3,Iris-virginica
|
2821 |
+
6.9,3.1,5.2,2.3,Iris-virginica
|
2822 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
2823 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2824 |
+
6.4,3.4,5.7,2.3,Iris-virginica
|
2825 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
2826 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
2827 |
+
6.9,3.1,5.3,2.2,Iris-virginica
|
2828 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
2829 |
+
7.2,2.9,6.0,1.7,Iris-virginica
|
2830 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
2831 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
2832 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2833 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2834 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
2835 |
+
7.7,2.9,6.4,2.2,Iris-virginica
|
2836 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
2837 |
+
7.6,3.7,6.6,2.1,Iris-virginica
|
2838 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2839 |
+
6.8,3.0,5.2,2.3,Iris-virginica
|
2840 |
+
6.8,3.1,5.9,2.3,Iris-virginica
|
2841 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
2842 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2843 |
+
7.2,2.9,6.2,1.7,Iris-virginica
|
2844 |
+
6.7,3.3,5.7,2.2,Iris-virginica
|
2845 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
2846 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
2847 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
2848 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
2849 |
+
6.6,3.1,5.7,2.3,Iris-virginica
|
2850 |
+
6.1,2.9,5.0,1.8,Iris-virginica
|
2851 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
2852 |
+
6.5,3.0,5.7,2.2,Iris-virginica
|
2853 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
2854 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
2855 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
2856 |
+
6.0,2.8,5.0,1.9,Iris-virginica
|
2857 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
2858 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
2859 |
+
7.3,2.9,6.4,1.9,Iris-virginica
|
2860 |
+
5.8,2.7,5.0,1.9,Iris-virginica
|
2861 |
+
6.5,3.0,5.3,2.0,Iris-virginica
|
2862 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2863 |
+
6.9,3.1,5.3,2.1,Iris-virginica
|
2864 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
2865 |
+
7.6,3.5,6.2,1.9,Iris-virginica
|
2866 |
+
7.7,2.7,6.9,2.3,Iris-virginica
|
2867 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
2868 |
+
7.3,2.9,5.9,1.7,Iris-virginica
|
2869 |
+
5.3,2.4,4.6,1.7,Iris-virginica
|
2870 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
2871 |
+
6.3,2.7,4.8,1.8,Iris-virginica
|
2872 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
2873 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2874 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
2875 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
2876 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
2877 |
+
5.6,2.8,5.0,2.0,Iris-virginica
|
2878 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2879 |
+
6.2,2.7,5.5,1.4,Iris-virginica
|
2880 |
+
6.7,3.0,5.3,2.3,Iris-virginica
|
2881 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2882 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
2883 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
2884 |
+
7.7,2.9,6.6,2.0,Iris-virginica
|
2885 |
+
5.7,2.6,5.0,2.0,Iris-virginica
|
2886 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2887 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
2888 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2889 |
+
6.8,3.3,5.9,2.4,Iris-virginica
|
2890 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
2891 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2892 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2893 |
+
6.8,3.1,5.5,2.4,Iris-virginica
|
2894 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
2895 |
+
7.5,2.8,6.2,2.0,Iris-virginica
|
2896 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
2897 |
+
6.2,2.5,5.0,2.0,Iris-virginica
|
2898 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2899 |
+
6.3,3.3,6.0,2.5,Iris-virginica
|
2900 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2901 |
+
7.2,3.0,5.9,1.7,Iris-virginica
|
2902 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2903 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
2904 |
+
5.0,2.4,4.6,1.7,Iris-virginica
|
2905 |
+
6.3,3.2,5.3,2.3,Iris-virginica
|
2906 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
2907 |
+
6.0,2.3,5.2,1.5,Iris-virginica
|
2908 |
+
7.6,2.8,6.6,2.0,Iris-virginica
|
2909 |
+
7.3,3.0,6.2,2.1,Iris-virginica
|
2910 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2911 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2912 |
+
7.0,3.1,5.9,2.2,Iris-virginica
|
2913 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
2914 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
2915 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2916 |
+
6.5,3.2,5.2,2.1,Iris-virginica
|
2917 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2918 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
2919 |
+
7.5,2.8,6.2,2.0,Iris-virginica
|
2920 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
2921 |
+
6.6,2.6,5.7,1.9,Iris-virginica
|
2922 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
2923 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2924 |
+
6.8,3.0,5.3,2.2,Iris-virginica
|
2925 |
+
7.4,3.0,6.4,2.0,Iris-virginica
|
2926 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2927 |
+
6.7,3.2,5.9,2.3,Iris-virginica
|
2928 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
2929 |
+
6.3,2.7,4.8,1.8,Iris-virginica
|
2930 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
2931 |
+
7.3,3.6,6.0,2.0,Iris-virginica
|
2932 |
+
6.9,3.1,5.3,2.3,Iris-virginica
|
2933 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
2934 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
2935 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
2936 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
2937 |
+
6.5,2.4,5.5,1.7,Iris-virginica
|
2938 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2939 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
2940 |
+
7.7,3.8,6.6,2.3,Iris-virginica
|
2941 |
+
5.8,2.6,5.0,2.1,Iris-virginica
|
2942 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2943 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
2944 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
2945 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
2946 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
2947 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
2948 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
2949 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
2950 |
+
6.4,3.4,5.7,2.4,Iris-virginica
|
2951 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
2952 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
2953 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
2954 |
+
6.5,3.0,5.3,2.0,Iris-virginica
|
2955 |
+
6.9,3.1,5.2,2.3,Iris-virginica
|
2956 |
+
7.5,3.6,6.4,2.3,Iris-virginica
|
2957 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
2958 |
+
5.8,2.6,5.0,2.1,Iris-virginica
|
2959 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
2960 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
2961 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
2962 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
2963 |
+
6.4,2.8,5.5,2.0,Iris-virginica
|
2964 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
2965 |
+
7.7,2.8,6.6,2.3,Iris-virginica
|
2966 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
2967 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
2968 |
+
6.7,3.2,5.7,2.4,Iris-virginica
|
2969 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2970 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
2971 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
2972 |
+
6.9,3.1,5.5,2.0,Iris-virginica
|
2973 |
+
6.5,3.0,5.7,2.2,Iris-virginica
|
2974 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
2975 |
+
7.1,3.4,5.9,2.4,Iris-virginica
|
2976 |
+
6.6,2.6,5.7,1.9,Iris-virginica
|
2977 |
+
6.8,3.3,5.7,2.4,Iris-virginica
|
2978 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
2979 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
2980 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
2981 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
2982 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
2983 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
2984 |
+
6.7,3.0,5.3,2.3,Iris-virginica
|
2985 |
+
7.8,3.8,6.6,2.1,Iris-virginica
|
2986 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
2987 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
2988 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
2989 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
2990 |
+
5.5,2.8,4.8,2.0,Iris-virginica
|
2991 |
+
6.4,3.2,5.2,2.2,Iris-virginica
|
2992 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
2993 |
+
7.3,2.9,6.4,1.9,Iris-virginica
|
2994 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
2995 |
+
5.7,2.8,5.0,2.2,Iris-virginica
|
2996 |
+
7.0,3.1,5.7,2.0,Iris-virginica
|
2997 |
+
7.2,3.6,6.0,2.5,Iris-virginica
|
2998 |
+
7.3,3.0,6.2,2.1,Iris-virginica
|
2999 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
3000 |
+
7.5,2.8,6.0,2.0,Iris-virginica
|
3001 |
+
6.7,3.0,5.3,2.3,Iris-virginica
|
data/sample.csv
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sepal length,sepal width,petal length,petal width,label
|
2 |
+
5.1,3.5,,0.2,Iris-setosa
|
3 |
+
4.9,,1.4,0.2,Iris-setosa
|
4 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
5 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
6 |
+
5.0,3.6,1.4,0.2,Iris-setosa
|
7 |
+
5.4,3.9,1.7,0.4,Iris-setosa
|
8 |
+
4.6,3.4,1.4,0.3,Iris-setosa
|
9 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
10 |
+
4.4,2.9,1.4,0.2,Iris-setosa
|
11 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
12 |
+
5.4,3.7,1.5,0.2,Iris-setosa
|
13 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
14 |
+
4.8,3.0,1.4,0.1,Iris-setosa
|
15 |
+
4.3,3.0,1.1,0.1,Iris-setosa
|
16 |
+
5.8,4.0,1.2,0.2,Iris-setosa
|
17 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
18 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
19 |
+
5.1,3.5,1.4,0.3,Iris-setosa
|
20 |
+
5.7,3.8,1.7,0.3,Iris-setosa
|
21 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
22 |
+
5.4,3.4,1.7,0.2,Iris-setosa
|
23 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
24 |
+
4.6,3.6,1.0,0.2,Iris-setosa
|
25 |
+
5.1,3.3,1.7,0.5,Iris-setosa
|
26 |
+
4.8,3.4,1.9,0.2,Iris-setosa
|
27 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
28 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
29 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
30 |
+
5.2,3.4,1.4,0.2,Iris-setosa
|
31 |
+
4.7,3.2,1.6,0.2,Iris-setosa
|
32 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
33 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
34 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
35 |
+
5.5,4.2,1.4,0.2,Iris-setosa
|
36 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
37 |
+
5.0,3.2,1.2,0.2,Iris-setosa
|
38 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
39 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
40 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
41 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
42 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
43 |
+
4.5,2.3,1.3,0.3,Iris-setosa
|
44 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
45 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
46 |
+
5.1,3.8,1.9,0.4,Iris-setosa
|
47 |
+
4.8,3.0,1.4,0.3,Iris-setosa
|
48 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
49 |
+
4.6,3.2,1.4,0.2,Iris-setosa
|
50 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
51 |
+
5.0,3.3,1.4,0.2,Iris-setosa
|
52 |
+
7.0,3.2,4.7,1.4,Iris-versicolor
|
53 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
54 |
+
6.9,3.1,4.9,1.5,Iris-versicolor
|
55 |
+
5.5,2.3,4.0,1.3,Iris-versicolor
|
56 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
57 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
58 |
+
6.3,3.3,4.7,1.6,Iris-versicolor
|
59 |
+
4.9,2.4,3.3,1.0,Iris-versicolor
|
60 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
61 |
+
5.2,2.7,3.9,1.4,Iris-versicolor
|
62 |
+
5.0,2.0,3.5,1.0,Iris-versicolor
|
63 |
+
5.9,3.0,4.2,1.5,Iris-versicolor
|
64 |
+
6.0,2.2,4.0,1.0,Iris-versicolor
|
65 |
+
6.1,2.9,4.7,1.4,Iris-versicolor
|
66 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
67 |
+
6.7,3.1,4.4,1.4,Iris-versicolor
|
68 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
69 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
70 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
71 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
72 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
73 |
+
6.1,2.8,4.0,1.3,Iris-versicolor
|
74 |
+
6.3,2.5,4.9,1.5,Iris-versicolor
|
75 |
+
6.1,2.8,4.7,1.2,Iris-versicolor
|
76 |
+
6.4,2.9,4.3,1.3,Iris-versicolor
|
77 |
+
6.6,3.0,4.4,1.4,Iris-versicolor
|
78 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
79 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
80 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
81 |
+
5.7,2.6,3.5,1.0,Iris-versicolor
|
82 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
83 |
+
5.5,2.4,3.7,1.0,Iris-versicolor
|
84 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
85 |
+
6.0,2.7,5.1,1.6,Iris-versicolor
|
86 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
87 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
88 |
+
6.7,3.1,4.7,1.5,Iris-versicolor
|
89 |
+
6.3,2.3,4.4,1.3,Iris-versicolor
|
90 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
91 |
+
5.5,2.5,4.0,1.3,Iris-versicolor
|
92 |
+
5.5,2.6,4.4,1.2,Iris-versicolor
|
93 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
94 |
+
5.8,2.6,4.0,1.2,Iris-versicolor
|
95 |
+
5.0,2.3,3.3,1.0,Iris-versicolor
|
96 |
+
5.6,2.7,4.2,1.3,Iris-versicolor
|
97 |
+
5.7,3.0,4.2,1.2,Iris-versicolor
|
98 |
+
5.7,2.9,4.2,1.3,Iris-versicolor
|
99 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
100 |
+
5.1,2.5,3.0,1.1,Iris-versicolor
|
101 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
102 |
+
6.3,3.3,6.0,2.5,Iris-virginica
|
103 |
+
5.8,2.7,5.1,1.9,Iris-virginica
|
104 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
105 |
+
6.3,2.9,5.6,1.8,Iris-virginica
|
106 |
+
6.5,3.0,5.8,2.2,Iris-virginica
|
107 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
108 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
109 |
+
7.3,2.9,6.3,1.8,Iris-virginica
|
110 |
+
6.7,2.5,5.8,1.8,Iris-virginica
|
111 |
+
7.2,3.6,6.1,2.5,Iris-virginica
|
112 |
+
6.5,3.2,5.1,2.0,Iris-virginica
|
113 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
114 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
115 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
116 |
+
5.8,2.8,5.1,2.4,Iris-virginica
|
117 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
118 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
119 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
120 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
121 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
122 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
123 |
+
5.6,2.8,4.9,2.0,Iris-virginica
|
124 |
+
7.7,2.8,6.7,2.0,Iris-virginica
|
125 |
+
6.3,2.7,4.9,1.8,Iris-virginica
|
126 |
+
6.7,3.3,5.7,2.1,Iris-virginica
|
127 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
128 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
129 |
+
6.1,3.0,4.9,1.8,Iris-virginica
|
130 |
+
6.4,2.8,5.6,2.1,Iris-virginica
|
131 |
+
7.2,3.0,5.8,1.6,Iris-virginica
|
132 |
+
7.4,2.8,6.1,1.9,Iris-virginica
|
133 |
+
7.9,3.8,6.4,2.0,Iris-virginica
|
134 |
+
6.4,2.8,5.6,2.2,Iris-virginica
|
135 |
+
6.3,2.8,5.1,1.5,Iris-virginica
|
136 |
+
6.1,2.6,5.6,1.4,Iris-virginica
|
137 |
+
7.7,3.0,6.1,2.3,Iris-virginica
|
138 |
+
6.3,3.4,5.6,2.4,Iris-virginica
|
139 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
140 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
141 |
+
6.9,3.1,5.4,2.1,Iris-virginica
|
142 |
+
6.7,3.1,5.6,2.4,Iris-virginica
|
143 |
+
6.9,3.1,5.1,2.3,Iris-virginica
|
144 |
+
5.8,2.7,5.1,1.9,Iris-virginica
|
145 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
146 |
+
6.7,3.3,5.7,2.5,Iris-virginica
|
147 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
148 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
149 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
150 |
+
6.2,3.4,5.4,2.3,Iris-virginica
|
151 |
+
5.9,3.0,5.1,1.8,Iris-virginica
|
152 |
+
|
experiments/logs/test.txt.txt
ADDED
File without changes
|
requirements.txt
ADDED
Binary file (3.23 kB). View file
|
|
utils/file_utils.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
def load_csv(file_path):
|
4 |
+
try:
|
5 |
+
df = pd.read_csv(file_path)
|
6 |
+
return df, None
|
7 |
+
except Exception as e:
|
8 |
+
return None, str(e)
|
9 |
+
|
10 |
+
def preview_dataframe(df, num_rows=5):
|
11 |
+
return df.head(num_rows)
|
12 |
+
|
13 |
+
def get_column_names(df):
|
14 |
+
return list(df.columns)
|
utils/logger.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
from datetime import datetime
|
5 |
+
import joblib
|
6 |
+
import psutil
|
7 |
+
import platform
|
8 |
+
|
9 |
+
try:
|
10 |
+
import cpuinfo
|
11 |
+
CPU_NAME = cpuinfo.get_cpu_info().get('brand_raw', platform.processor())
|
12 |
+
except Exception:
|
13 |
+
CPU_NAME = platform.processor()
|
14 |
+
|
15 |
+
def log_experiment_results(logs, log_dir="experiments/logs/", log_file="experiment_log.jsonl"):
|
16 |
+
os.makedirs(log_dir, exist_ok=True)
|
17 |
+
log_path = os.path.join(log_dir, log_file)
|
18 |
+
with open(log_path, "a") as f:
|
19 |
+
for entry in logs:
|
20 |
+
f.write(json.dumps(entry) + "\n")
|
21 |
+
|
22 |
+
def create_log_entry(experiment_title, model_name, hyperparams, dataset_name, preprocessing, metrics, train_time, model_object):
|
23 |
+
timestamp = datetime.now().isoformat()
|
24 |
+
model_size = get_model_size(model_object)
|
25 |
+
cpu_util = psutil.cpu_percent(interval=0.1)
|
26 |
+
return {
|
27 |
+
"experiment_title": experiment_title,
|
28 |
+
"timestamp": timestamp,
|
29 |
+
"model": model_name,
|
30 |
+
"hyperparameters": hyperparams,
|
31 |
+
"dataset": dataset_name,
|
32 |
+
"preprocessing": preprocessing,
|
33 |
+
"metrics": metrics,
|
34 |
+
"training_time_sec": train_time,
|
35 |
+
"model_size_bytes": model_size,
|
36 |
+
"system_info": {
|
37 |
+
"cpu": CPU_NAME,
|
38 |
+
"cpu_utilization": cpu_util,
|
39 |
+
"memory_used_mb": psutil.Process().memory_info().rss // 1024 ** 2
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
def get_model_size(model):
|
44 |
+
temp_path = "experiments/logs/_temp_model.joblib"
|
45 |
+
joblib.dump(model, temp_path)
|
46 |
+
size = os.path.getsize(temp_path)
|
47 |
+
os.remove(temp_path)
|
48 |
+
return size
|
utils/preprocessing.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
4 |
+
|
5 |
+
def preprocess_data(df, target_col, missing_strategy="drop", transformation_map=None):
|
6 |
+
df = df.copy()
|
7 |
+
|
8 |
+
# 1. Handle missing values
|
9 |
+
if missing_strategy == "drop":
|
10 |
+
df = df.dropna()
|
11 |
+
elif missing_strategy in ["mean", "median"]:
|
12 |
+
numeric_cols = df.select_dtypes(include=["number"]).columns
|
13 |
+
non_numeric_cols = df.columns.difference(numeric_cols)
|
14 |
+
if missing_strategy == "mean":
|
15 |
+
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].mean())
|
16 |
+
else:
|
17 |
+
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].median())
|
18 |
+
for col in non_numeric_cols:
|
19 |
+
if df[col].isna().sum() > 0:
|
20 |
+
df[col] = df[col].fillna(df[col].mode()[0])
|
21 |
+
elif missing_strategy == "mode":
|
22 |
+
for col in df.columns:
|
23 |
+
if df[col].isna().sum() > 0:
|
24 |
+
df[col] = df[col].fillna(df[col].mode()[0])
|
25 |
+
|
26 |
+
# 2. Apply feature transformations
|
27 |
+
if transformation_map:
|
28 |
+
for col, transform in transformation_map.items():
|
29 |
+
if transform == "Label Encode":
|
30 |
+
if df[col].dtype == "object" or str(df[col].dtype).startswith("category"):
|
31 |
+
df[col] = LabelEncoder().fit_transform(df[col])
|
32 |
+
else:
|
33 |
+
df[col] = LabelEncoder().fit_transform(df[col].astype(str))
|
34 |
+
elif transform == "Normalize":
|
35 |
+
scaler = StandardScaler()
|
36 |
+
df[[col]] = scaler.fit_transform(df[[col]])
|
37 |
+
# "No Transformation" = leave column as is
|
38 |
+
|
39 |
+
# 3. Label encode target column if it's a string
|
40 |
+
if target_col and target_col in df.columns:
|
41 |
+
if df[target_col].dtype == "object" or str(df[target_col].dtype).startswith("category"):
|
42 |
+
df[target_col] = LabelEncoder().fit_transform(df[target_col])
|
43 |
+
|
44 |
+
return df
|
45 |
+
|
utils/split.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.model_selection import train_test_split
|
2 |
+
|
3 |
+
def split_data(df, target_col, test_size=0.2, random_state=42):
|
4 |
+
X = df.drop(columns=[target_col])
|
5 |
+
y = df[target_col]
|
6 |
+
return train_test_split(X, y, test_size=test_size, random_state=random_state)
|
utils/training.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from sklearn.linear_model import LogisticRegression
|
3 |
+
from sklearn.tree import DecisionTreeClassifier
|
4 |
+
from sklearn.ensemble import RandomForestClassifier
|
5 |
+
from sklearn.svm import SVC
|
6 |
+
from sklearn.naive_bayes import GaussianNB
|
7 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
8 |
+
from time import perf_counter as timer # β
Use perf_counter for better precision
|
9 |
+
import joblib
|
10 |
+
import os
|
11 |
+
|
12 |
+
def get_model_instance(model_name, params):
|
13 |
+
if model_name == "Logistic Regression":
|
14 |
+
return LogisticRegression(**params)
|
15 |
+
elif model_name == "Decision Tree":
|
16 |
+
return DecisionTreeClassifier(**params)
|
17 |
+
elif model_name == "Random Forest":
|
18 |
+
return RandomForestClassifier(**params)
|
19 |
+
elif model_name == "SVM":
|
20 |
+
return SVC(**params)
|
21 |
+
elif model_name == "Naive Bayes":
|
22 |
+
return GaussianNB(**params)
|
23 |
+
else:
|
24 |
+
raise ValueError(f"Unsupported model: {model_name}")
|
25 |
+
|
26 |
+
def train_models(X_train, X_test, y_train, y_test, selected_models, model_params, preprocessing_steps, experiment_name="DefaultExperiment", dataset_name="Uploaded CSV"):
|
27 |
+
results = {}
|
28 |
+
for model_name in selected_models:
|
29 |
+
params = model_params.get(model_name, {})
|
30 |
+
model = get_model_instance(model_name, params)
|
31 |
+
|
32 |
+
# β
Measure training time with high precision
|
33 |
+
start_time = timer()
|
34 |
+
model.fit(X_train, y_train)
|
35 |
+
training_time = round(timer() - start_time, 4)
|
36 |
+
|
37 |
+
# β
Measure model size
|
38 |
+
temp_model_path = f"models/{model_name.replace(' ', '_')}_temp.joblib"
|
39 |
+
os.makedirs("models", exist_ok=True)
|
40 |
+
joblib.dump(model, temp_model_path)
|
41 |
+
model_size = os.path.getsize(temp_model_path)
|
42 |
+
os.remove(temp_model_path)
|
43 |
+
|
44 |
+
# β
Predictions
|
45 |
+
y_train_pred = model.predict(X_train)
|
46 |
+
y_test_pred = model.predict(X_test)
|
47 |
+
|
48 |
+
# β
Inference time on a single sample
|
49 |
+
single_sample = X_test.iloc[[0]] if hasattr(X_test, "iloc") else X_test[0].reshape(1, -1)
|
50 |
+
start_inf = timer()
|
51 |
+
_ = model.predict(single_sample)
|
52 |
+
inference_time = round(timer() - start_inf, 6)
|
53 |
+
|
54 |
+
# β
Evaluation metrics
|
55 |
+
metrics = {
|
56 |
+
"accuracy_train": accuracy_score(y_train, y_train_pred),
|
57 |
+
"accuracy_test": accuracy_score(y_test, y_test_pred),
|
58 |
+
"precision_train": precision_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
59 |
+
"precision_test": precision_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
60 |
+
"recall_train": recall_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
61 |
+
"recall_test": recall_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
62 |
+
"f1_score_train": f1_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
63 |
+
"f1_score_test": f1_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
64 |
+
"inference_time": inference_time
|
65 |
+
}
|
66 |
+
|
67 |
+
results[model_name] = {
|
68 |
+
"model": model,
|
69 |
+
"metrics": metrics,
|
70 |
+
"training_time": training_time,
|
71 |
+
"inference_time": inference_time,
|
72 |
+
"model_size": model_size
|
73 |
+
}
|
74 |
+
return results
|