Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
import tempfile
|
8 |
import os
|
9 |
-
|
10 |
-
|
11 |
-
"""
|
12 |
-
Save video frames using OpenCV instead of moviepy
|
13 |
-
"""
|
14 |
-
# Get frame dimensions
|
15 |
-
height, width = frames[0].shape[:2]
|
16 |
-
|
17 |
-
# Initialize video writer
|
18 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
19 |
-
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
20 |
-
|
21 |
-
# Write frames
|
22 |
-
for frame in frames:
|
23 |
-
# Convert from RGB to BGR (OpenCV uses BGR)
|
24 |
-
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
25 |
-
out.write(frame_bgr)
|
26 |
-
|
27 |
-
# Release video writer
|
28 |
-
out.release()
|
29 |
|
30 |
def generate_video_from_image(image, duration_seconds=10, progress_bar=None):
|
31 |
"""
|
32 |
-
Generate a video from an image using
|
33 |
"""
|
34 |
try:
|
35 |
if progress_bar:
|
@@ -43,44 +25,44 @@ def generate_video_from_image(image, duration_seconds=10, progress_bar=None):
|
|
43 |
st.write(f"Generated caption: *{caption}*")
|
44 |
|
45 |
if progress_bar:
|
46 |
-
progress_bar.progress(0.3, "Loading
|
47 |
|
48 |
-
# Initialize
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
|
52 |
if progress_bar:
|
53 |
progress_bar.progress(0.4, "Processing image...")
|
54 |
|
55 |
-
#
|
56 |
-
|
|
|
|
|
57 |
|
58 |
if progress_bar:
|
59 |
progress_bar.progress(0.5, "Generating video frames...")
|
60 |
|
61 |
-
# Generate video
|
62 |
-
num_frames = duration_seconds *
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
).videos[0]
|
71 |
|
72 |
if progress_bar:
|
73 |
progress_bar.progress(0.8, "Creating final video...")
|
74 |
|
75 |
-
# Convert frames to numpy arrays
|
76 |
-
frames = [np.array(frame) for frame in video_frames]
|
77 |
-
|
78 |
# Create temporary file for video
|
79 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
|
80 |
output_path = tmp_file.name
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
|
85 |
if progress_bar:
|
86 |
progress_bar.progress(1.0, "Video generation complete!")
|
@@ -89,23 +71,25 @@ def generate_video_from_image(image, duration_seconds=10, progress_bar=None):
|
|
89 |
|
90 |
except Exception as e:
|
91 |
st.error(f"Error generating video: {str(e)}")
|
92 |
-
raise
|
93 |
-
return None, None
|
94 |
|
95 |
def main():
|
96 |
-
st.set_page_config(page_title="Video Generator", page_icon="π₯")
|
97 |
|
98 |
-
st.title("π₯
|
99 |
st.write("""
|
100 |
Upload an image to generate a video with AI-powered motion and transitions.
|
101 |
The app will automatically generate a caption for your image and use it as inspiration for the video.
|
102 |
""")
|
103 |
|
|
|
|
|
|
|
104 |
# File uploader
|
105 |
uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg', 'jpeg'])
|
106 |
|
107 |
-
# Duration selector
|
108 |
-
duration = st.slider("Video duration (seconds)", min_value=1, max_value=
|
109 |
|
110 |
if uploaded_file is not None:
|
111 |
# Display uploaded image
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from transformers import pipeline
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
import tempfile
|
8 |
import os
|
9 |
+
from diffusers import VideoToVideoSDPipeline
|
10 |
+
from diffusers.utils import export_to_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def generate_video_from_image(image, duration_seconds=10, progress_bar=None):
|
13 |
"""
|
14 |
+
Generate a video from an image using VideoToVideoSDPipeline.
|
15 |
"""
|
16 |
try:
|
17 |
if progress_bar:
|
|
|
25 |
st.write(f"Generated caption: *{caption}*")
|
26 |
|
27 |
if progress_bar:
|
28 |
+
progress_bar.progress(0.3, "Loading Video Generation model...")
|
29 |
|
30 |
+
# Initialize Video Generation pipeline
|
31 |
+
pipeline = VideoToVideoSDPipeline.from_pretrained(
|
32 |
+
"cerspense/zeroscope_v2_576w",
|
33 |
+
torch_dtype=torch.float16
|
34 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
|
36 |
if progress_bar:
|
37 |
progress_bar.progress(0.4, "Processing image...")
|
38 |
|
39 |
+
# Prepare image
|
40 |
+
if image.mode != "RGB":
|
41 |
+
image = image.convert("RGB")
|
42 |
+
image = image.resize((576, 320)) # Resize to model's expected size
|
43 |
|
44 |
if progress_bar:
|
45 |
progress_bar.progress(0.5, "Generating video frames...")
|
46 |
|
47 |
+
# Generate video
|
48 |
+
num_frames = duration_seconds * 8 # 8 FPS for this model
|
49 |
+
video_frames = pipeline(
|
50 |
+
image,
|
51 |
+
num_inference_steps=50,
|
52 |
+
num_frames=num_frames,
|
53 |
+
guidance_scale=7.5,
|
54 |
+
prompt=caption,
|
55 |
+
).videos[0]
|
|
|
56 |
|
57 |
if progress_bar:
|
58 |
progress_bar.progress(0.8, "Creating final video...")
|
59 |
|
|
|
|
|
|
|
60 |
# Create temporary file for video
|
61 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
|
62 |
output_path = tmp_file.name
|
63 |
|
64 |
+
# Export video frames
|
65 |
+
export_to_video(video_frames, output_path, fps=8)
|
66 |
|
67 |
if progress_bar:
|
68 |
progress_bar.progress(1.0, "Video generation complete!")
|
|
|
71 |
|
72 |
except Exception as e:
|
73 |
st.error(f"Error generating video: {str(e)}")
|
74 |
+
raise
|
|
|
75 |
|
76 |
def main():
|
77 |
+
st.set_page_config(page_title="AI Video Generator", page_icon="π₯")
|
78 |
|
79 |
+
st.title("π₯ Video Generator")
|
80 |
st.write("""
|
81 |
Upload an image to generate a video with AI-powered motion and transitions.
|
82 |
The app will automatically generate a caption for your image and use it as inspiration for the video.
|
83 |
""")
|
84 |
|
85 |
+
# Add warning about computational requirements
|
86 |
+
st.warning("Note: Video generation may take several minutes depending on the duration and available computing resources.")
|
87 |
+
|
88 |
# File uploader
|
89 |
uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg', 'jpeg'])
|
90 |
|
91 |
+
# Duration selector (adjusted for this model's capabilities)
|
92 |
+
duration = st.slider("Video duration (seconds)", min_value=1, max_value=15, value=5)
|
93 |
|
94 |
if uploaded_file is not None:
|
95 |
# Display uploaded image
|