Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from huggingface_hub import hf_hub_download
|
|
10 |
# Define the model and username
|
11 |
MODEL_NAME = "XGBoost"
|
12 |
HF_USERNAME = "Devishetty100"
|
13 |
-
CUSTOM_MODEL_NAME = "
|
14 |
REPO_ID = f"{HF_USERNAME}/{CUSTOM_MODEL_NAME.lower()}"
|
15 |
|
16 |
# List of trusted domains that should always be considered safe
|
@@ -32,7 +32,18 @@ TRUSTED_DOMAINS = [
|
|
32 |
def load_model_files():
|
33 |
try:
|
34 |
print(f"Attempting to download model from Hugging Face Hub: {REPO_ID}")
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
scaler_path = hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib")
|
37 |
feature_names_path = hf_hub_download(repo_id=REPO_ID, filename="feature_names.json")
|
38 |
|
@@ -52,7 +63,9 @@ def load_model_files():
|
|
52 |
# If downloading fails, try to load from local files
|
53 |
try:
|
54 |
print("Attempting to load model from local files...")
|
55 |
-
|
|
|
|
|
56 |
scaler = joblib.load("scaler.joblib")
|
57 |
|
58 |
with open("feature_names.json", 'r') as f:
|
|
|
10 |
# Define the model and username
|
11 |
MODEL_NAME = "XGBoost"
|
12 |
HF_USERNAME = "Devishetty100"
|
13 |
+
CUSTOM_MODEL_NAME = "NeoGuardianAI"
|
14 |
REPO_ID = f"{HF_USERNAME}/{CUSTOM_MODEL_NAME.lower()}"
|
15 |
|
16 |
# List of trusted domains that should always be considered safe
|
|
|
32 |
def load_model_files():
|
33 |
try:
|
34 |
print(f"Attempting to download model from Hugging Face Hub: {REPO_ID}")
|
35 |
+
# Try to list files in the repository to see what's available
|
36 |
+
try:
|
37 |
+
from huggingface_hub import list_repo_files
|
38 |
+
files = list_repo_files(repo_id=REPO_ID)
|
39 |
+
print(f"Files available in the repository: {files}")
|
40 |
+
except Exception as list_error:
|
41 |
+
print(f"Error listing repository files: {list_error}")
|
42 |
+
|
43 |
+
# Use lowercase 'xgboost' instead of MODEL_NAME.lower() to match the actual filename
|
44 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename="xgboost_model.joblib")
|
45 |
+
print(f"Downloaded model file to: {model_path}")
|
46 |
+
|
47 |
scaler_path = hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib")
|
48 |
feature_names_path = hf_hub_download(repo_id=REPO_ID, filename="feature_names.json")
|
49 |
|
|
|
63 |
# If downloading fails, try to load from local files
|
64 |
try:
|
65 |
print("Attempting to load model from local files...")
|
66 |
+
# Try with the correct lowercase name
|
67 |
+
model = joblib.load("xgboost_model.joblib")
|
68 |
+
print("Successfully loaded xgboost_model.joblib")
|
69 |
scaler = joblib.load("scaler.joblib")
|
70 |
|
71 |
with open("feature_names.json", 'r') as f:
|