File size: 6,331 Bytes
5340689 0c1f3a6 5340689 55bf7cd 5340689 0c1f3a6 1e5035c 0c1f3a6 5340689 0c1f3a6 5340689 0c1f3a6 5340689 6704fb2 5340689 5727cc0 5340689 6704fb2 5340689 0c1f3a6 5340689 98afb0d 0c1f3a6 5340689 2f3fc02 5340689 0c1f3a6 5340689 0c1f3a6 5340689 0c1f3a6 5340689 16f9838 5340689 0c1f3a6 5340689 0c1f3a6 0717812 5340689 0c1f3a6 5340689 0c1f3a6 5340689 0c1f3a6 5340689 0c1f3a6 5340689 0c1f3a6 0717812 5340689 0c1f3a6 5340689 0c1f3a6 5340689 1f8ccc4 c0fb29b 5340689 98afb0d 5340689 6ca9c35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests
import validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# Colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs[0]
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
pil_img = Image.open(buf)
basewidth = 750
wpercent = (basewidth / float(pil_img.size[0]))
hsize = int((float(pil_img.size[1]) * float(wpercent)))
img = pil_img.resize((basewidth, hsize), Image.Resampling.LANCZOS)
return img
def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
plt.figure(figsize=(50, 50))
plt.imshow(img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
if label == 'license-plates':
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=10))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8))
plt.axis("off")
return fig2img(plt.gcf())
def get_original_image(url_input):
if validators.url(url_input):
image = Image.open(requests.get(url_input, stream=True).raw)
return image
def detect_objects(model_name, url_input, image_input,threshold):
# Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
if "yolos" in model_name:
model = YolosForObjectDetection.from_pretrained(model_name)
elif "detr" in model_name:
model = DetrForObjectDetection.from_pretrained(model_name)
if validators.url(url_input):
image = get_original_image(url_input)
elif image_input is not None:
image = image_input
# Make prediction
processed_outputs = make_prediction(image, feature_extractor, model)
# Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
return viz_img
title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
description = """
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
This model was further fine-tuned on the [Car license plate dataset](https://www.kaggle.com/datasets/andrewmvd/car-plate-detection) from Kaggle. The dataset consists of 443 images of vehicles with annotations categorized as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU.
Links to HuggingFace Models:
- [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
- [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)
"""
models = ["nickmuchi/yolos-small-finetuned-license-plate-detection", "nickmuchi/detr-resnet50-license-plate-detection"]
urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ", "https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
gr.Markdown(description)
options = gr.Dropdown(choices=models, label='Object Detection Model', value=models[0], show_label=True)
slider_input = gr.Slider(minimum=0.2, maximum=1, value=0.5, step=0.1, label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image URL'):
with gr.Row():
with gr.Column():
url_input = gr.Textbox(lines=2, label='Enter valid image URL here..')
original_image = gr.Image()
url_input.change(fn=get_original_image, inputs=url_input, outputs=original_image)
with gr.Column():
img_output_from_url = gr.Image()
with gr.Row():
example_url = gr.Examples(examples=urls, inputs=[url_input])
url_but = gr.Button('Detect')
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output_from_upload = gr.Image()
with gr.Row():
example_images = gr.Examples(examples=images, inputs=[img_input])
img_but = gr.Button('Detect')
url_but.click(fn=detect_objects, inputs=[options, url_input, img_input, slider_input], outputs=[img_output_from_url], queue=True)
img_but.click(fn=detect_objects, inputs=[options, url_input, img_input, slider_input], outputs=[img_output_from_upload], queue=True)
#gr.Markdown("")
demo.launch(debug=True)
|