Spaces:
Running
Running
File size: 11,073 Bytes
0187d9a bf7f5ee fe6002b bf7f5ee 0187d9a fe6002b 3421a2e bf7f5ee 0187d9a fe6002b bf7f5ee 3421a2e bf7f5ee 3421a2e bf7f5ee 782a7c2 bf7f5ee fe6002b e75b314 fe6002b e75b314 fe6002b 0187d9a fe6002b 0187d9a bf7f5ee fe6002b bf7f5ee fe6002b bf7f5ee fe6002b bf7f5ee fe6002b 9917a58 bf7f5ee fe6002b 0187d9a fe6002b 60695bc cfe7921 dc7fc97 60695bc e75b314 fe6002b 42cc1f1 9917a58 fe6002b 9917a58 fe6002b 9917a58 fe6002b 0187d9a fe6002b 0187d9a bf7f5ee 0187d9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import sys
import os
import time
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, status
from fastapi.responses import FileResponse
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
import uvicorn
import traceback
import pickle
import shutil
from pathlib import Path
from contextlib import asynccontextmanager
import pandas as pd
from typing import Annotated, Optional, Union
from datetime import datetime, timedelta, timezone
import jwt
from jwt.exceptions import InvalidTokenError
from passlib.context import CryptContext
from pydantic import BaseModel
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(current_dir, "meisai-check-ai"))
from sentence_transformer_lib.sentence_transformer_helper import (
SentenceTransformerHelper,
)
from data_lib.input_name_data import InputNameData
from data_lib.subject_data import SubjectData
from data_lib.sample_name_data import SampleNameData
from clustering_lib.sentence_clustering_lib import SentenceClusteringLib
from data_lib.base_data import (
COL_STANDARD_NAME,
COL_STANDARD_NAME_KEY,
COL_STANDARD_SUBJECT,
)
from mapping_lib.name_mapping_helper import NameMappingHelper
# Initialize global variables for model and data
sentenceTransformerHelper = None
dic_standard_subject = None
sample_name_sentence_embeddings = None
sample_name_sentence_similarities = None
sampleData = None
sentence_clustering_lib = None
name_groups = None
# Create data directory if it doesn't exist
os.makedirs(os.path.join(current_dir, "data"), exist_ok=True)
os.makedirs(os.path.join(current_dir, "uploads"), exist_ok=True)
os.makedirs(os.path.join(current_dir, "outputs"), exist_ok=True)
# Authentication related settings
SECRET_KEY = "09d25e094faa6ca2556c818166b7a9563b93f7099f6f0f4caa6cf63b88e8d3e7"
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_HOURS = 24 # Token expiration set to 24 hours
# Password hashing context
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
# OAuth2 scheme for token
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
# User database models
class Token(BaseModel):
access_token: str
token_type: str
class TokenData(BaseModel):
username: Optional[str] = None
class User(BaseModel):
username: str
email: Optional[str] = None
full_name: Optional[str] = None
disabled: Optional[bool] = None
class UserInDB(User):
hashed_password: str
# Fake users database with hashed passwords
users_db = {
"chien_vm": {
"username": "chien_vm",
"full_name": "Chien VM",
"email": "[email protected]",
"hashed_password": "$2b$12$RtcKFk7B3hKd7vYkwxdFN.eBXSiryQIRUG.OoJ07Pl9lzHNUkugMi",
"disabled": False,
},
"hoi_nv": {
"username": "hoi_nv",
"full_name": "Hoi NV",
"email": "[email protected]",
"hashed_password": "$2b$12$RtcKFk7B3hKd7vYkwxdFN.eBXSiryQIRUG.OoJ07Pl9lzHNUkugMi",
"disabled": False,
}
}
# Authentication helper functions
def verify_password(plain_password, hashed_password):
return pwd_context.verify(plain_password, hashed_password)
def get_user(db, username: str):
if username in db:
user_dict = db[username]
return UserInDB(**user_dict)
return None
def authenticate_user(fake_db, username: str, password: str):
user = get_user(fake_db, username)
if not user:
return False
if not verify_password(password, user.hashed_password):
return False
return user
def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
to_encode = data.copy()
if expires_delta:
expire = datetime.now(timezone.utc) + expires_delta
else:
expire = datetime.now(timezone.utc) + timedelta(hours=ACCESS_TOKEN_EXPIRE_HOURS)
to_encode.update({"exp": expire})
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
return encoded_jwt
async def get_current_user(token: Annotated[str, Depends(oauth2_scheme)]):
credentials_exception = HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Could not validate credentials",
headers={"WWW-Authenticate": "Bearer"},
)
try:
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
username = payload.get("sub")
if username is None:
raise credentials_exception
token_data = TokenData(username=username)
except InvalidTokenError:
raise credentials_exception
user = get_user(users_db, username=token_data.username)
if user is None:
raise credentials_exception
return user
async def get_current_active_user(
current_user: Annotated[User, Depends(get_current_user)],
):
if current_user.disabled:
raise HTTPException(status_code=400, detail="Inactive user")
return current_user
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Lifespan context manager for startup and shutdown events"""
global sentenceTransformerHelper, dic_standard_subject, sample_name_sentence_embeddings
global sample_name_sentence_similarities, sampleData, sentence_clustering_lib, name_groups
try:
# Load sentence transformer model
sentenceTransformerHelper = SentenceTransformerHelper(
convert_to_zenkaku_flag=True, replace_words=None, keywords=None
)
sentenceTransformerHelper.load_model_by_name(
"Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_0"
)
# Load standard subject dictionary
dic_standard_subject = SubjectData.create_standard_subject_dic_from_file(
"data/subjectData.csv"
)
# Load pre-computed embeddings and similarities
with open(
f"data/sample_name_sentence_embeddings(cl-nagoya-sup-simcse-ja-for-standard-name-v1_1).pkl",
"rb",
) as f:
sample_name_sentence_embeddings = pickle.load(f)
with open(
f"data/sample_name_sentence_similarities(cl-nagoya-sup-simcse-ja-for-standard-name-v1_1).pkl",
"rb",
) as f:
sample_name_sentence_similarities = pickle.load(f)
# Load and process sample data
sampleData = SampleNameData()
file_path = os.path.join(current_dir, "data", "sampleData.csv")
sampleData.load_data_from_csv(file_path)
sampleData.process_data()
# Create sentence clusters
sentence_clustering_lib = SentenceClusteringLib(sample_name_sentence_embeddings)
best_name_eps = 0.07
name_groups, _ = sentence_clustering_lib.create_sentence_cluster(best_name_eps)
sampleData._create_key_column(
COL_STANDARD_NAME_KEY, COL_STANDARD_SUBJECT, COL_STANDARD_NAME
)
sampleData.set_name_sentence_labels(name_groups)
sampleData.build_search_tree()
print("Models and data loaded successfully")
except Exception as e:
print(f"Error during startup: {e}")
traceback.print_exc()
yield # This is where the app runs
# Cleanup code (if needed) goes here
print("Shutting down application")
app = FastAPI(lifespan=lifespan)
@app.get("/")
async def root():
return {"message": "Hello World"}
@app.get("/health")
async def health_check():
return {"status": "ok", "timestamp": time.time()}
@app.post("/token")
async def login_for_access_token(
form_data: Annotated[OAuth2PasswordRequestForm, Depends()]
) -> Token:
"""
Login endpoint to get an access token
"""
user = authenticate_user(users_db, form_data.username, form_data.password)
if not user:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password",
headers={"WWW-Authenticate": "Bearer"},
)
access_token_expires = timedelta(hours=ACCESS_TOKEN_EXPIRE_HOURS)
access_token = create_access_token(
data={"sub": user.username}, expires_delta=access_token_expires
)
return Token(access_token=access_token, token_type="bearer")
@app.post("/predict")
async def predict(
current_user: Annotated[User, Depends(get_current_active_user)],
file: UploadFile = File(...)
):
"""
Process an input CSV file and return standardized names (requires authentication)
"""
global sentenceTransformerHelper, dic_standard_subject, sample_name_sentence_embeddings
global sample_name_sentence_similarities, sampleData, name_groups
if not file.filename.endswith(".csv"):
raise HTTPException(status_code=400, detail="Only CSV files are supported")
# Save uploaded file
timestamp = int(time.time())
input_file_path = os.path.join(current_dir, "uploads", f"input_{timestamp}_{current_user.username}.csv")
# Use CSV format with correct extension
output_file_path = os.path.join(current_dir, "outputs", f"output_{timestamp}_{current_user.username}.csv")
try:
with open(input_file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
finally:
file.file.close()
try:
# Process input data
inputData = InputNameData(dic_standard_subject)
inputData.load_data_from_csv(input_file_path)
inputData.process_data()
# Map standard names
nameMappingHelper = NameMappingHelper(
sentenceTransformerHelper,
inputData,
sampleData,
sample_name_sentence_embeddings,
sample_name_sentence_similarities,
)
df_predicted = nameMappingHelper.map_standard_names()
# Create output dataframe and save to CSV
print("Columns of inputData.dataframe", inputData.dataframe.columns)
column_to_keep = ['シート名', '行', '科目', '分類', '名称', '摘要', '備考']
output_df = inputData.dataframe[column_to_keep].copy()
output_df.reset_index(drop=False, inplace=True)
output_df.loc[:, "出力_科目"] = df_predicted["出力_科目"]
output_df.loc[:, "出力_項目名"] = df_predicted["出力_項目名"]
output_df.loc[:, "出力_確率度"] = df_predicted["出力_確率度"]
# Save with utf_8_sig encoding for Japanese Excel compatibility
output_df.to_csv(output_file_path, index=False, encoding="utf_8_sig")
# Return the file as a download with correct content type and headers
return FileResponse(
path=output_file_path,
filename=f"output_{Path(file.filename).stem}.csv",
media_type="text/csv",
headers={
"Content-Disposition": f'attachment; filename="output_{Path(file.filename).stem}.csv"',
"Content-Type": "application/x-www-form-urlencoded",
},
)
except Exception as e:
print(f"Error processing file: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|