|
import gradio as gr |
|
from transformers import pipeline |
|
import torch |
|
|
|
|
|
english_sentiment_model = pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment") |
|
arabic_sentiment_model = pipeline("sentiment-analysis", model="akhooli/arabic-sentiment") |
|
|
|
def analyze_sentiment(text, language): |
|
if language == "English": |
|
result = english_sentiment_model(text) |
|
else: |
|
result = arabic_sentiment_model(text) |
|
return result[0]['label'], result[0]['score'] |
|
|
|
|
|
iface = gr.Interface( |
|
fn=analyze_sentiment, |
|
inputs=[ |
|
gr.inputs.Textbox(label="Enter text"), |
|
gr.inputs.Radio(choices=["English", "Arabic"], label="Select Language") |
|
], |
|
outputs=[ |
|
gr.outputs.Label(label="Sentiment"), |
|
gr.outputs.Number(label="Confidence Score") |
|
], |
|
title="Sentiment Analysis", |
|
description="Analyze the sentiment of text in English and Arabic." |
|
) |
|
|
|
iface.launch() |