Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Specify the device (CPU or GPU)
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
+
# Load the image-to-text pipeline
|
11 |
+
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device)
|
12 |
+
|
13 |
+
# List of local image paths
|
14 |
+
example_images = ["image1.jpeg"]
|
15 |
+
|
16 |
+
# Function to process the image
|
17 |
+
def process_image(image):
|
18 |
+
caption = caption_image(image)[0]['generated_text']
|
19 |
+
return caption
|
20 |
+
|
21 |
+
# Create Gradio interface with example images
|
22 |
+
iface = gr.Interface(
|
23 |
+
fn=process_image,
|
24 |
+
inputs=gr.Image(type="pil"),
|
25 |
+
outputs=gr.Textbox(label="Generated Caption"),
|
26 |
+
examples=example_images # Use local images as examples
|
27 |
+
)
|
28 |
+
|
29 |
+
# Launch the interface
|
30 |
+
iface.launch()
|