Spaces:
Sleeping
Sleeping
import torch | |
from transformers import pipeline | |
from PIL import Image | |
import gradio as gr | |
import os | |
# Specify the device (CPU or GPU) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load the image-to-text pipeline | |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) | |
# List of local image paths | |
example_images = ["flower.jpg"] | |
# Function to process the image | |
def process_image(image): | |
caption = caption_image(image)[0]['generated_text'] | |
return caption | |
# Create Gradio interface with example images | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Textbox(label="Generated Caption"), | |
examples=example_images # Use local images as examples | |
) | |
# Launch the interface | |
iface.launch() |