File size: 1,718 Bytes
0b19c40
a10e2f7
0b19c40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a10e2f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
from langchain_core.messages import HumanMessage,AIMessage,ToolMessage
import json


class DisplayResultStreamlit:
    def __init__(self,usecase,graph,user_message):
        self.usecase= usecase
        self.graph = graph
        self.user_message = user_message

    def display_result_on_ui(self):
        usecase= self.usecase
        graph = self.graph
        user_message = self.user_message
        if usecase =="Basic Chatbot":
                for event in graph.stream({'messages':("user",user_message)}):
                    print(event.values())
                    for value in event.values():
                        print(value['messages'])
                        with st.chat_message("user"):
                            st.write(user_message)
                        with st.chat_message("assistant"):
                            st.write(value["messages"].content)

        elif usecase=="Chatbot with Tool":
             # Prepare state and invoke the graph
            initial_state = {"messages": [user_message]}
            res = graph.invoke(initial_state)
            for message in res['messages']:
                if type(message) == HumanMessage:
                    with st.chat_message("user"):
                        st.write(message.content)
                elif type(message)==ToolMessage:
                    with st.chat_message("ai"):
                        st.write("Tool Call Start")
                        st.write(message.content)
                        st.write("Tool Call End")
                elif type(message)==AIMessage and message.content:
                    with st.chat_message("assistant"):
                        st.write(message.content)