# Import necessary libraries import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model and tokenizer model_name = "meta-llama/Llama-3.2-1B-Instruct" # or "meta-llama/Llama-3.2-3B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def answer_question(question, max_tokens=100): """Generate an answer to a given question about photography.""" if not question.strip(): return "Please enter a question." inputs = tokenizer(question, return_tensors="pt") outputs = model.generate(**inputs, max_length=max_tokens, pad_token_id=tokenizer.eos_token_id, temperature=0.7, top_p=0.9) return tokenizer.decode(outputs[0], skip_special_tokens=True) def generate_practice(subject, max_length=400, temperature=0.7, top_p=0.9): """Generate a concise photography exercise for a given subject.""" if not subject.strip(): return "Please select a photography subject." prompt = (f"Create a concise photography exercise for {subject}. " f"The exercise should include: " f"1. Objective: One sentence about what students should learn. " f"2. Materials: List essential equipment. " f"3. Steps: Three to four concise instructions. " f"4. Expected outcomes: One sentence on what students should achieve.") inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, pad_token_id=tokenizer.eos_token_id, max_length=max_length, temperature=temperature, top_p=top_p) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Define the Gradio interface using Blocks with gr.Blocks() as demo: # Title and Description gr.Markdown("# 📸 Photography Learning Assistant") gr.Markdown("Welcome to the **Photography Learning Assistant**! Use the Q&A section to ask questions or generate exercises.") # Q&A Section gr.Markdown("### 📝 Q&A") question_input = gr.Textbox(label="Photography Question", placeholder="Enter a question (e.g., What is the rule of thirds?)", lines=2) max_tokens_slider = gr.Slider(minimum=50, maximum=500, step=50, value=100, label="Max Tokens") answer_button = gr.Button("Get Answer") answer_output = gr.Textbox(label="Answer", lines=10) answer_button.click(fn=answer_question, inputs=[question_input, max_tokens_slider], outputs=answer_output) gr.Markdown("#### 💡 Sample Questions") gr.Markdown(""" - What are different types of photography? - Explain the exposure triangle like you would explain to a 5-year-old. """) # Generate Practice Exercise Section gr.Markdown("### 🎯 Generate Practice Exercise") subject_dropdown = gr.Radio(choices=["Composition", "Lighting", "Camera Settings", "Exposure", "Post-Processing"], label="Photography Subject") max_length_slider = gr.Slider(minimum=100, maximum=800, step=50, value=400, label="Max Length") temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature") top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top P") generate_button = gr.Button("Generate Exercise") practice_output = gr.Textbox(label="Generated Practice Exercise", lines=15) generate_button.click(fn=generate_practice, inputs=[subject_dropdown, max_length_slider, temperature_slider, top_p_slider], outputs=practice_output) # Launch the Gradio app demo.launch(share=True)