Deepri24 commited on
Commit
e22568a
Β·
verified Β·
1 Parent(s): c53cb54

commit app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -0
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Install required libraries
2
+ !pip install transformers gradio torch
3
+
4
+ # Import necessary libraries
5
+ import gradio as gr
6
+ from transformers import AutoTokenizer, AutoModelForCausalLM
7
+
8
+ # Load the model and tokenizer
9
+ model_name = "meta-llama/Llama-3.2-1B-Instruct" # or "meta-llama/Llama-3.2-3B-Instruct"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForCausalLM.from_pretrained(model_name)
12
+
13
+ def answer_question(question, max_tokens=100):
14
+ """Generate an answer to a given question about photography."""
15
+ if not question.strip():
16
+ return "Please enter a question."
17
+
18
+ inputs = tokenizer(question, return_tensors="pt")
19
+ outputs = model.generate(**inputs, max_length=max_tokens, pad_token_id=tokenizer.eos_token_id, temperature=0.7, top_p=0.9)
20
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
21
+
22
+ def generate_practice(subject, max_length=400, temperature=0.7, top_p=0.9):
23
+ """Generate a concise photography exercise for a given subject."""
24
+ if not subject.strip():
25
+ return "Please select a photography subject."
26
+
27
+ prompt = (f"Create a concise photography exercise for {subject}. "
28
+ f"The exercise should include: "
29
+ f"1. Objective: One sentence about what students should learn. "
30
+ f"2. Materials: List essential equipment. "
31
+ f"3. Steps: Three to four concise instructions. "
32
+ f"4. Expected outcomes: One sentence on what students should achieve.")
33
+
34
+ inputs = tokenizer(prompt, return_tensors="pt")
35
+ outputs = model.generate(**inputs, pad_token_id=tokenizer.eos_token_id, max_length=max_length, temperature=temperature, top_p=top_p)
36
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
37
+
38
+ # Define the Gradio interface using Blocks
39
+ with gr.Blocks() as demo:
40
+ # Title and Description
41
+ gr.Markdown("# πŸ“Έ Photography Learning Assistant")
42
+ gr.Markdown("Welcome to the **Photography Learning Assistant**! Use the Q&A section to ask questions or generate exercises.")
43
+
44
+ # Q&A Section
45
+ gr.Markdown("### πŸ“ Q&A")
46
+ question_input = gr.Textbox(label="Photography Question", placeholder="Enter a question (e.g., What is the rule of thirds?)", lines=2)
47
+ max_tokens_slider = gr.Slider(minimum=50, maximum=500, step=50, value=100, label="Max Tokens")
48
+ answer_button = gr.Button("Get Answer")
49
+ answer_output = gr.Textbox(label="Answer", lines=10)
50
+ answer_button.click(fn=answer_question, inputs=[question_input, max_tokens_slider], outputs=answer_output)
51
+
52
+ gr.Markdown("#### πŸ’‘ Sample Questions")
53
+ gr.Markdown("""
54
+ - What are different types of photography?
55
+ - Explain the exposure triangle like you would explain to a 5-year-old.
56
+ """)
57
+
58
+
59
+ # Generate Practice Exercise Section
60
+ gr.Markdown("### 🎯 Generate Practice Exercise")
61
+ subject_dropdown = gr.Radio(choices=["Composition", "Lighting", "Camera Settings", "Exposure", "Post-Processing"], label="Photography Subject")
62
+ max_length_slider = gr.Slider(minimum=100, maximum=800, step=50, value=400, label="Max Length")
63
+ temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature")
64
+ top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top P")
65
+ generate_button = gr.Button("Generate Exercise")
66
+ practice_output = gr.Textbox(label="Generated Practice Exercise", lines=15)
67
+ generate_button.click(fn=generate_practice, inputs=[subject_dropdown, max_length_slider, temperature_slider, top_p_slider], outputs=practice_output)
68
+
69
+ # Launch the Gradio app
70
+ demo.launch(share=True)