RAG_GRAD / app.py
Deepakraj2006's picture
Update app.py
0ccdb83 verified
raw
history blame
4.81 kB
import os
import gradio as gr
import torch
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
# Set Hugging Face Cache Directory
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
# Check for GPU availability
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
# Global variables
conversation_retrieval_chain = None
chat_history = []
llm_pipeline = None
embeddings = None
persist_directory = "/tmp/chroma_db" # Storage for vector DB
def init_llm():
"""Initialize LLM and Embeddings"""
global llm_pipeline, embeddings
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in environment variables.")
model_id = "tiiuae/falcon-7b-instruct"
hf_pipeline = pipeline("text-generation", model=model_id, device=DEVICE)
llm_pipeline = HuggingFacePipeline(pipeline=hf_pipeline)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": DEVICE}
)
import time
def process_document(file):
global conversation_retrieval_chain
if not llm_pipeline or not embeddings:
init_llm()
start_time = time.time()
print(f"πŸ“‚ Uploading PDF: {file.name}")
try:
# βœ… Ensure file is saved correctly
file_path = os.path.join("/tmp/uploads", file.name)
with open(file_path, "wb") as f:
f.write(file.read())
print(f"βœ… PDF saved at {file_path} in {time.time() - start_time:.2f}s")
# βœ… Load PDF
start_time = time.time()
loader = PyPDFLoader(file_path)
documents = loader.load()
print(f"βœ… PDF loaded in {time.time() - start_time:.2f}s")
# βœ… Split text
start_time = time.time()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
print(f"βœ… Text split in {time.time() - start_time:.2f}s")
# βœ… Create ChromaDB
start_time = time.time()
db = Chroma.from_documents(texts, embedding=embeddings, persist_directory="/tmp/chroma_db")
print(f"βœ… ChromaDB created in {time.time() - start_time:.2f}s")
# βœ… Create retrieval chain
conversation_retrieval_chain = ConversationalRetrievalChain.from_llm(
llm=llm_pipeline, retriever=db.as_retriever()
)
print("βœ… Document processing complete!")
return "πŸ“„ PDF uploaded and processed successfully! You can now ask questions."
except Exception as e:
print(f"❌ Error processing PDF: {str(e)}")
return f"Error: {str(e)}"
def process_prompt(prompt, chat_history_display):
"""Generate a response using the retrieval chain"""
global conversation_retrieval_chain, chat_history
if not conversation_retrieval_chain:
return chat_history_display + [("❌ No document uploaded.", "Please upload a PDF first.")]
output = conversation_retrieval_chain({"question": prompt, "chat_history": chat_history})
answer = output["answer"]
chat_history.append((prompt, answer))
return chat_history
# Define Gradio UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>Personal Data Assistant</h1>")
with gr.Row():
dark_mode = gr.Checkbox(label="πŸŒ™ Toggle light/dark mode")
with gr.Column(): # βœ… Replace `gr.Box()` with `gr.Column()`
gr.Markdown("Hello there! I'm your friendly data assistant, ready to answer any questions regarding your data. Could you please upload a PDF file for me to analyze?")
file_input = gr.File(label="Upload File")
upload_button = gr.Button("πŸ“‚ Upload File")
status_output = gr.Textbox(label="Status", interactive=False)
chat_history_display = gr.Chatbot(label="Chat History")
with gr.Row():
user_input = gr.Textbox(placeholder="Type your message here...", scale=4)
submit_button = gr.Button("πŸ“©", scale=1)
clear_button = gr.Button("πŸ”„", scale=1)
# Button Click Actions
upload_button.click(process_document, inputs=file_input, outputs=status_output)
submit_button.click(process_prompt, inputs=[user_input, chat_history_display], outputs=chat_history_display)
clear_button.click(lambda: [], outputs=chat_history_display)
# Launch Gradio App
if __name__ == "__main__":
demo.launch(share=True)