DeepSoft-Tech commited on
Commit
5b1326d
·
verified ·
1 Parent(s): 9e33cca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -0
app.py CHANGED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from pinecone import Pinecone
4
+
5
+ # initialize connection to pinecone (get API key at app.pinecone.io)
6
+ api_key = os.environ.get('PINECONE_API_KEY') or '68f4d786-9797-4c17-8620-9b5302a3823b'
7
+
8
+ # configure client
9
+ pc = Pinecone(api_key=api_key)
10
+
11
+ from pinecone import ServerlessSpec
12
+
13
+ cloud = os.environ.get('PINECONE_CLOUD') or 'aws'
14
+ region = os.environ.get('PINECONE_REGION') or 'us-east-1'
15
+
16
+ spec = ServerlessSpec(cloud=cloud, region=region)
17
+
18
+ index_name = 'search-index'
19
+
20
+ import time
21
+
22
+ existing_indexes = [
23
+ index_info["name"] for index_info in pc.list_indexes()
24
+ ]
25
+
26
+ # # check if index already exists (it shouldn't if this is first time)
27
+ # if index_name not in existing_indexes:
28
+ # # if does not exist, create index
29
+ # pc.create_index(
30
+ # index_name,
31
+ # dimension=384, # dimensionality of minilm
32
+ # metric='cosine',
33
+ # spec=spec
34
+ # )
35
+ # # wait for index to be initialized
36
+ # while not pc.describe_index(index_name).status['ready']:
37
+ # time.sleep(1)
38
+
39
+ # connect to index
40
+ index = pc.Index(index_name)
41
+ time.sleep(1)
42
+ # view index stats
43
+ index.describe_index_stats()
44
+
45
+ from sentence_transformers import SentenceTransformer
46
+ # import torch
47
+
48
+ # device = 'cuda' if torch.cuda.is_available() else 'cpu'
49
+
50
+ model = SentenceTransformer('intfloat/e5-small')
51
+
52
+
53
+ # Set up the Streamlit app
54
+ st.set_page_config(page_title="Hotel Search", page_icon=":hotel:", layout="wide")
55
+
56
+ # Set up the Streamlit app title and search bar
57
+ st.title("Hotel Search")
58
+ query = st.text_input("Enter a search query:", "")
59
+
60
+ # If the user has entered a search query, search the Pinecone index with the query
61
+ if query:
62
+ # Upsert the embeddings for the query into the Pinecone index
63
+ query_embeddings = model.encode(query).tolist()
64
+ # now query
65
+ xc = index.query(vector=query_embeddings, top_k=5,, namespace="hotel-detail", include_metadata=True)
66
+
67
+ # Display the search results
68
+ st.write(f"Search results for '{query}':")
69
+ for result in xc['matches']:
70
+ st.write(f"{round(result['score'], 2)}: {result['metadata']['meta_text']}")