from functools import partial import torch from torch import nn class Swish(nn.Module): def __init__(self): super(Swish, self).__init__() def forward(self, x): return x * torch.sigmoid(x) def linear(): return nn.Identity() def relu(): return nn.ReLU() def prelu(): return nn.PReLU() def leaky_relu(): return nn.LeakyReLU() def sigmoid(): return nn.Sigmoid() def softmax(dim=None): return nn.Softmax(dim=dim) def tanh(): return nn.Tanh() def gelu(): return nn.GELU() def swish(): return Swish() def register_activation(custom_act): """Register a custom activation, gettable with `activation.get`. Args: custom_act: Custom activation function to register. """ if custom_act.__name__ in globals().keys() or custom_act.__name__.lower() in globals().keys(): raise ValueError(f"Activation {custom_act.__name__} already exists. Choose another name.") globals().update({custom_act.__name__: custom_act}) def get(identifier): """Returns an activation function from a string. Returns its input if it is callable (already an activation for example). Args: identifier (str or Callable or None): the activation identifier. Returns: :class:`nn.Module` or None """ if identifier is None: return None elif callable(identifier): return identifier elif isinstance(identifier, str): cls = globals().get(identifier) if cls is None: raise ValueError("Could not interpret activation identifier: " + str(identifier)) return cls else: raise ValueError("Could not interpret activation identifier: " + str(identifier))