Update DPTNet_eval/DPTNet_quant_sep.py
Browse files- DPTNet_eval/DPTNet_quant_sep.py +33 -66
DPTNet_eval/DPTNet_quant_sep.py
CHANGED
@@ -1,25 +1,12 @@
|
|
1 |
-
# DPTNet_quant_sep.py
|
2 |
-
|
3 |
-
import warnings
|
4 |
-
warnings.filterwarnings("ignore", message="Failed to initialize NumPy: _ARRAY_API not found")
|
5 |
-
|
6 |
import os
|
7 |
import torch
|
8 |
import numpy as np
|
9 |
import torchaudio
|
10 |
-
|
11 |
-
|
12 |
-
# 動態導入 asteroid_test 中的 DPTNet
|
13 |
-
try:
|
14 |
-
from . import asteroid_test
|
15 |
-
except ImportError as e:
|
16 |
-
raise ImportError("無法載入 asteroid_test 模組,請確認該模組與訓練時相同") from e
|
17 |
-
|
18 |
-
torchaudio.set_audio_backend("sox_io")
|
19 |
|
20 |
|
21 |
def get_conf():
|
22 |
-
"""取得模型參數設定"""
|
23 |
conf_filterbank = {
|
24 |
'n_filters': 64,
|
25 |
'kernel_size': 16,
|
@@ -45,61 +32,19 @@ def get_conf():
|
|
45 |
|
46 |
def load_dpt_model():
|
47 |
print('Load Separation Model...')
|
48 |
-
|
49 |
-
speech_sep_token = os.getenv("SpeechSeparation")
|
50 |
-
if not speech_sep_token:
|
51 |
-
raise EnvironmentError("環境變數 SpeechSeparation 未設定!")
|
52 |
-
|
53 |
-
model_path = hf_hub_download(
|
54 |
-
repo_id="DeepLearning101/speech-separation",
|
55 |
-
filename="train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p",
|
56 |
-
token=speech_sep_token
|
57 |
-
)
|
58 |
-
|
59 |
conf_filterbank, conf_masknet = get_conf()
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
model = model_class(**conf_filterbank, **conf_masknet)
|
64 |
-
except Exception as e:
|
65 |
-
raise RuntimeError("模型結構錯誤:請確認 asteroid_test.py 是否與訓練時相同") from e
|
66 |
-
|
67 |
-
model = torch.quantization.quantize_dynamic(
|
68 |
-
model,
|
69 |
-
{torch.nn.LSTM, torch.nn.Linear},
|
70 |
-
dtype=torch.qint8
|
71 |
-
)
|
72 |
-
|
73 |
state_dict = torch.load(model_path, map_location="cpu")
|
74 |
-
|
75 |
-
|
76 |
-
# 只保留是 torch.Tensor 的 key-value pairs
|
77 |
-
filtered_state_dict = {}
|
78 |
-
for k, v in state_dict.items():
|
79 |
-
if k in own_state:
|
80 |
-
if isinstance(v, torch.Tensor) and isinstance(own_state[k], torch.Tensor):
|
81 |
-
if v.shape == own_state[k].shape:
|
82 |
-
filtered_state_dict[k] = v
|
83 |
-
else:
|
84 |
-
print(f"Skip '{k}': shape mismatch")
|
85 |
-
else:
|
86 |
-
print(f"Skip '{k}': not a tensor")
|
87 |
-
|
88 |
-
missing_keys, unexpected_keys = model.load_state_dict(filtered_state_dict, strict=False)
|
89 |
-
|
90 |
-
if missing_keys:
|
91 |
-
print("⚠️ Missing keys:", missing_keys)
|
92 |
-
if unexpected_keys:
|
93 |
-
print("ℹ️ Unexpected keys:", unexpected_keys)
|
94 |
-
|
95 |
model.eval()
|
96 |
return model
|
97 |
|
98 |
-
|
99 |
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
100 |
-
"""進行語音分離處理"""
|
101 |
if model is None:
|
102 |
-
model =
|
103 |
|
104 |
x, sr = torchaudio.load(wav_path)
|
105 |
x = x.cpu()
|
@@ -107,8 +52,10 @@ def dpt_sep_process(wav_path, model=None, outfilename=None):
|
|
107 |
with torch.no_grad():
|
108 |
est_sources = model(x) # shape: (1, 2, T)
|
109 |
|
|
|
110 |
est_sources = est_sources.squeeze(0) # shape: (2, T)
|
111 |
-
|
|
|
112 |
|
113 |
# 正規化
|
114 |
max_abs = x[0].abs().max().item()
|
@@ -119,7 +66,6 @@ def dpt_sep_process(wav_path, model=None, outfilename=None):
|
|
119 |
sep_1 = sep_1.unsqueeze(0)
|
120 |
sep_2 = sep_2.unsqueeze(0)
|
121 |
|
122 |
-
# 儲存結果
|
123 |
if outfilename is not None:
|
124 |
torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr)
|
125 |
torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr)
|
@@ -127,7 +73,28 @@ def dpt_sep_process(wav_path, model=None, outfilename=None):
|
|
127 |
else:
|
128 |
torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
129 |
torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
if __name__ == '__main__':
|
133 |
print("This module should be used via Flask or Gradio.")
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import torchaudio
|
5 |
+
import yaml
|
6 |
+
from . import asteroid_test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def get_conf():
|
|
|
10 |
conf_filterbank = {
|
11 |
'n_filters': 64,
|
12 |
'kernel_size': 16,
|
|
|
32 |
|
33 |
def load_dpt_model():
|
34 |
print('Load Separation Model...')
|
35 |
+
now_path = os.path.split(os.path.realpath(__file__))[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
conf_filterbank, conf_masknet = get_conf()
|
37 |
+
model_path = os.path.join(now_path, "trained_model/train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p")
|
38 |
+
model = getattr(asteroid_test, "DPTNet")(**conf_filterbank, **conf_masknet)
|
39 |
+
model = torch.quantization.quantize_dynamic(model, {torch.nn.LSTM, torch.nn.Linear}, dtype=torch.qint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
state_dict = torch.load(model_path, map_location="cpu")
|
41 |
+
model.load_state_dict(state_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
model.eval()
|
43 |
return model
|
44 |
|
|
|
45 |
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
|
|
46 |
if model is None:
|
47 |
+
model = load_model()
|
48 |
|
49 |
x, sr = torchaudio.load(wav_path)
|
50 |
x = x.cpu()
|
|
|
52 |
with torch.no_grad():
|
53 |
est_sources = model(x) # shape: (1, 2, T)
|
54 |
|
55 |
+
# 確保 est_sources 是 (1, 2, T),再拆分
|
56 |
est_sources = est_sources.squeeze(0) # shape: (2, T)
|
57 |
+
|
58 |
+
sep_1, sep_2 = est_sources # 拆成兩個 (T, ) 的 tensor
|
59 |
|
60 |
# 正規化
|
61 |
max_abs = x[0].abs().max().item()
|
|
|
66 |
sep_1 = sep_1.unsqueeze(0)
|
67 |
sep_2 = sep_2.unsqueeze(0)
|
68 |
|
|
|
69 |
if outfilename is not None:
|
70 |
torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr)
|
71 |
torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr)
|
|
|
73 |
else:
|
74 |
torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
75 |
torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
76 |
+
|
77 |
+
# def dpt_sep_process(wav_path, model=None, outfilename=None):
|
78 |
+
# if model == None:
|
79 |
+
# model = load_model()
|
80 |
+
# x, sr = torchaudio.load(wav_path)
|
81 |
+
# x = x.cpu()
|
82 |
+
# with torch.no_grad():
|
83 |
+
# est_sources = model(x)
|
84 |
+
|
85 |
+
# est_sources_np = est_sources.squeeze(0)
|
86 |
+
|
87 |
+
# sep_1, sep_2 = est_sources_np
|
88 |
+
# sep_1 = sep_1 * x[0].abs().max().item() / sep_1.abs().max().item()
|
89 |
+
# sep_2 = sep_2 * x[0].abs().max().item() / sep_2.abs().max().item()
|
90 |
+
|
91 |
+
# if outfilename != None:
|
92 |
+
# torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr)
|
93 |
+
# torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr)
|
94 |
+
# torchaudio.save(outfilename.replace('.wav', '_mix.wav'), x, sr)
|
95 |
+
# else:
|
96 |
+
# torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
97 |
+
# torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
98 |
|
99 |
if __name__ == '__main__':
|
100 |
print("This module should be used via Flask or Gradio.")
|