Update app.py
Browse files
app.py
CHANGED
@@ -2,56 +2,95 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import os
|
4 |
import soundfile as sf
|
5 |
-
import numpy as np
|
6 |
import librosa
|
7 |
-
import
|
8 |
import tempfile
|
|
|
|
|
9 |
from DPTNet_eval.DPTNet_quant_sep import load_dpt_model, dpt_sep_process
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def separate_audio(input_wav):
|
19 |
-
"""
|
|
|
|
|
|
|
20 |
try:
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
data, sr = librosa.load(input_wav, sr=None, mono=True)
|
23 |
|
24 |
-
#
|
25 |
if sr != 16000:
|
|
|
26 |
data = librosa.resample(data, orig_sr=sr, target_sr=16000)
|
27 |
sr = 16000
|
28 |
-
|
29 |
-
#
|
30 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
31 |
temp_wav = tmp_file.name
|
|
|
32 |
sf.write(temp_wav, data, sr, subtype='PCM_16')
|
33 |
|
34 |
-
#
|
35 |
-
|
|
|
|
|
|
|
36 |
dpt_sep_process(temp_wav, model=model, outfilename=outfilename)
|
37 |
|
38 |
-
#
|
39 |
-
os.remove(temp_wav)
|
40 |
-
|
41 |
-
# 步驟 6:驗證輸出檔案存在
|
42 |
output_files = [
|
43 |
outfilename.replace('.wav', '_sep1.wav'),
|
44 |
outfilename.replace('.wav', '_sep2.wav')
|
45 |
]
|
|
|
|
|
|
|
46 |
if not all(os.path.exists(f) for f in output_files):
|
47 |
-
|
|
|
48 |
|
|
|
49 |
return output_files
|
50 |
|
51 |
except Exception as e:
|
52 |
-
|
53 |
-
error_msg
|
54 |
-
raise gr.Error(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# 🎯 你提供的 description 內容(已轉為 HTML)
|
57 |
description_html = """
|
@@ -97,13 +136,13 @@ description_html = """
|
|
97 |
"""
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
-
# 配置
|
101 |
interface = gr.Interface(
|
102 |
fn=separate_audio,
|
103 |
inputs=gr.Audio(
|
104 |
type="filepath",
|
105 |
-
label="請上傳混音音檔 (
|
106 |
-
max_length=
|
107 |
),
|
108 |
outputs=[
|
109 |
gr.Audio(label="語音軌道 1"),
|
@@ -118,10 +157,13 @@ if __name__ == "__main__":
|
|
118 |
]
|
119 |
)
|
120 |
|
121 |
-
#
|
122 |
interface.launch(
|
123 |
server_name="0.0.0.0",
|
124 |
server_port=7860,
|
125 |
share=False,
|
126 |
-
debug=False
|
|
|
|
|
|
|
127 |
)
|
|
|
2 |
import torch
|
3 |
import os
|
4 |
import soundfile as sf
|
|
|
5 |
import librosa
|
6 |
+
import logging
|
7 |
import tempfile
|
8 |
+
import traceback
|
9 |
+
from datetime import datetime
|
10 |
from DPTNet_eval.DPTNet_quant_sep import load_dpt_model, dpt_sep_process
|
11 |
|
12 |
+
# 配置日志系统
|
13 |
+
logging.basicConfig(
|
14 |
+
filename='app.log',
|
15 |
+
level=logging.INFO,
|
16 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
17 |
+
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
# 全局模型加载(避免重复加载)
|
21 |
+
try:
|
22 |
+
logger.info("開始加載語音分離模型...")
|
23 |
+
model = load_dpt_model()
|
24 |
+
logger.info("模型加載成功")
|
25 |
+
except Exception as e:
|
26 |
+
logger.error(f"模型加載失敗: {str(e)}")
|
27 |
+
raise RuntimeError("模型初始化失敗") from e
|
28 |
|
29 |
def separate_audio(input_wav):
|
30 |
+
"""處理音訊分離的主函數"""
|
31 |
+
process_id = datetime.now().strftime("%Y%m%d%H%M%S%f")
|
32 |
+
temp_wav = None
|
33 |
+
|
34 |
try:
|
35 |
+
logger.info(f"[{process_id}] 開始處理檔案: {input_wav}")
|
36 |
+
|
37 |
+
# 1. 驗證輸入檔案
|
38 |
+
if not os.path.exists(input_wav):
|
39 |
+
raise gr.Error("檔案不存在,請重新上傳")
|
40 |
+
if os.path.getsize(input_wav) > 50 * 1024 * 1024: # 50MB限制
|
41 |
+
raise gr.Error("檔案大小超過50MB限制")
|
42 |
+
|
43 |
+
# 2. 讀取並標準化音訊
|
44 |
+
logger.info(f"[{process_id}] 讀取音訊檔案...")
|
45 |
data, sr = librosa.load(input_wav, sr=None, mono=True)
|
46 |
|
47 |
+
# 3. 重採樣處理
|
48 |
if sr != 16000:
|
49 |
+
logger.info(f"[{process_id}] 重採樣從 {sr}Hz 到 16000Hz...")
|
50 |
data = librosa.resample(data, orig_sr=sr, target_sr=16000)
|
51 |
sr = 16000
|
52 |
+
|
53 |
+
# 4. 創建臨時檔案
|
54 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
|
55 |
temp_wav = tmp_file.name
|
56 |
+
logger.info(f"[{process_id}] 寫入臨時檔案: {temp_wav}")
|
57 |
sf.write(temp_wav, data, sr, subtype='PCM_16')
|
58 |
|
59 |
+
# 5. 執行語音分離
|
60 |
+
logger.info(f"[{process_id}] 開始語音分離...")
|
61 |
+
out_dir = tempfile.mkdtemp() # 使用臨時目錄存放輸出
|
62 |
+
outfilename = os.path.join(out_dir, "output.wav")
|
63 |
+
|
64 |
dpt_sep_process(temp_wav, model=model, outfilename=outfilename)
|
65 |
|
66 |
+
# 6. 獲取輸出檔案
|
|
|
|
|
|
|
67 |
output_files = [
|
68 |
outfilename.replace('.wav', '_sep1.wav'),
|
69 |
outfilename.replace('.wav', '_sep2.wav')
|
70 |
]
|
71 |
+
logger.info(f"[{process_id}] 預期輸出檔案: {output_files}")
|
72 |
+
|
73 |
+
# 7. 驗證輸出
|
74 |
if not all(os.path.exists(f) for f in output_files):
|
75 |
+
missing = [f for f in output_files if not os.path.exists(f)]
|
76 |
+
raise gr.Error(f"分離失敗,缺失檔案: {missing}")
|
77 |
|
78 |
+
logger.info(f"[{process_id}] 處理完成")
|
79 |
return output_files
|
80 |
|
81 |
except Exception as e:
|
82 |
+
error_msg = f"[{process_id}] 處理錯誤: {str(e)}\n{traceback.format_exc()}"
|
83 |
+
logger.error(error_msg)
|
84 |
+
raise gr.Error(f"處理失敗: {str(e)}") from e
|
85 |
+
|
86 |
+
finally:
|
87 |
+
# 清理臨時檔案
|
88 |
+
if temp_wav and os.path.exists(temp_wav):
|
89 |
+
try:
|
90 |
+
os.remove(temp_wav)
|
91 |
+
logger.info(f"[{process_id}] 已清理臨時檔案")
|
92 |
+
except Exception as clean_err:
|
93 |
+
logger.warning(f"[{process_id}] 清理失敗: {str(clean_err)}")
|
94 |
|
95 |
# 🎯 你提供的 description 內容(已轉為 HTML)
|
96 |
description_html = """
|
|
|
136 |
"""
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
+
# 配置Gradio接口
|
140 |
interface = gr.Interface(
|
141 |
fn=separate_audio,
|
142 |
inputs=gr.Audio(
|
143 |
type="filepath",
|
144 |
+
label="請上傳混音音檔 (支援格式: mp3/wav/ogg)",
|
145 |
+
max_length=180 # 3分鐘限制
|
146 |
),
|
147 |
outputs=[
|
148 |
gr.Audio(label="語音軌道 1"),
|
|
|
157 |
]
|
158 |
)
|
159 |
|
160 |
+
# 啟動服務(重要參數調整)
|
161 |
interface.launch(
|
162 |
server_name="0.0.0.0",
|
163 |
server_port=7860,
|
164 |
share=False,
|
165 |
+
debug=False,
|
166 |
+
max_threads=2, # 限制並行處理數
|
167 |
+
enable_queue=True, # 啟用隊列系統
|
168 |
+
auth=("user", "pass") if os.getenv("HF_SPACE") else None # 生產環境加權限
|
169 |
)
|