DeepLearning101's picture
Upload 16 files
b6c45cb verified
raw
history blame contribute delete
10.5 kB
from math import ceil
import warnings
import torch.nn as nn
from torch.nn.modules.activation import MultiheadAttention
from ..masknn import activations, norms
import torch
from ..dsp.overlap_add import DualPathProcessing
import inspect
class ImprovedTransformedLayer(nn.Module):
"""
Improved Transformer module as used in [1].
It is Multi-Head self-attention followed by LSTM, activation and linear projection layer.
Args:
embed_dim (int): Number of input channels.
n_heads (int): Number of attention heads.
dim_ff (int): Number of neurons in the RNNs cell state.
Defaults to 256. RNN here replaces standard FF linear layer in plain Transformer.
dropout (float, optional): Dropout ratio, must be in [0,1].
activation (str, optional): activation function applied at the output of RNN.
bidirectional (bool, optional): True for bidirectional Inter-Chunk RNN
(Intra-Chunk is always bidirectional).
norm_type (str, optional): Type of normalization to use.
References:
[1] Chen, Jingjing, Qirong Mao, and Dong Liu.
"Dual-Path Transformer Network: Direct Context-Aware Modeling for End-to-End Monaural Speech Separation."
arXiv preprint arXiv:2007.13975 (2020).
"""
def __init__(
self,
embed_dim,
n_heads,
dim_ff,
dropout=0.0,
activation="relu",
bidirectional=True,
norm="gLN",
):
super(ImprovedTransformedLayer, self).__init__()
self.mha = MultiheadAttention(embed_dim, n_heads, dropout=dropout)
# self.linear_first = nn.Linear(embed_dim, 2 * dim_ff) # Added by Kay. 20201119
self.dropout = nn.Dropout(dropout)
self.recurrent = nn.LSTM(embed_dim, dim_ff, bidirectional=bidirectional, batch_first=True)
ff_inner_dim = 2 * dim_ff if bidirectional else dim_ff
self.linear = nn.Linear(ff_inner_dim, embed_dim)
self.activation = activations.get(activation)()
self.norm_mha = norms.get(norm)(embed_dim)
self.norm_ff = norms.get(norm)(embed_dim)
def forward(self, x):
tomha = x.permute(2, 0, 1)
# x is batch, channels, seq_len
# mha is seq_len, batch, channels
# self-attention is applied
out = self.mha(tomha, tomha, tomha)[0]
x = self.dropout(out.permute(1, 2, 0)) + x
x = self.norm_mha(x)
# lstm is applied
out = self.linear(self.dropout(self.activation(self.recurrent(x.transpose(1, -1))[0])))
x = self.dropout(out.transpose(1, -1)) + x
return self.norm_ff(x)
''' version 0.3.4
def forward(self, x):
x = x.transpose(1, -1)
# x is batch, seq_len, channels
# self-attention is applied
out = self.mha(x, x, x)[0]
x = self.dropout(out) + x
x = self.norm_mha(x.transpose(1, -1)).transpose(1, -1)
# lstm is applied
out = self.linear(self.dropout(self.activation(self.recurrent(x)[0])))
# out = self.linear(self.dropout(self.activation(self.linear_first(x)[0])))
x = self.dropout(out) + x
return self.norm_ff(x.transpose(1, -1))
'''
class DPTransformer(nn.Module):
"""Dual-path Transformer introduced in [1].
Args:
in_chan (int): Number of input filters.
n_src (int): Number of masks to estimate.
n_heads (int): Number of attention heads.
ff_hid (int): Number of neurons in the RNNs cell state.
Defaults to 256.
chunk_size (int): window size of overlap and add processing.
Defaults to 100.
hop_size (int or None): hop size (stride) of overlap and add processing.
Default to `chunk_size // 2` (50% overlap).
n_repeats (int): Number of repeats. Defaults to 6.
norm_type (str, optional): Type of normalization to use.
ff_activation (str, optional): activation function applied at the output of RNN.
mask_act (str, optional): Which non-linear function to generate mask.
bidirectional (bool, optional): True for bidirectional Inter-Chunk RNN
(Intra-Chunk is always bidirectional).
dropout (float, optional): Dropout ratio, must be in [0,1].
References
[1] Chen, Jingjing, Qirong Mao, and Dong Liu. "Dual-Path Transformer
Network: Direct Context-Aware Modeling for End-to-End Monaural Speech Separation."
arXiv (2020).
"""
def __init__(
self,
in_chan,
n_src,
n_heads=4,
ff_hid=256,
chunk_size=100,
hop_size=None,
n_repeats=6,
norm_type="gLN",
ff_activation="relu",
mask_act="relu",
bidirectional=True,
dropout=0,
):
super(DPTransformer, self).__init__()
self.in_chan = in_chan
self.n_src = n_src
self.n_heads = n_heads
self.ff_hid = ff_hid
self.chunk_size = chunk_size
hop_size = hop_size if hop_size is not None else chunk_size // 2
self.hop_size = hop_size
self.n_repeats = n_repeats
self.n_src = n_src
self.norm_type = norm_type
self.ff_activation = ff_activation
self.mask_act = mask_act
self.bidirectional = bidirectional
self.dropout = dropout
# version 0.3.4
# self.in_norm = norms.get(norm_type)(in_chan)
self.mha_in_dim = ceil(self.in_chan / self.n_heads) * self.n_heads
if self.in_chan % self.n_heads != 0:
warnings.warn(
f"DPTransformer input dim ({self.in_chan}) is not a multiple of the number of "
f"heads ({self.n_heads}). Adding extra linear layer at input to accomodate "
f"(size [{self.in_chan} x {self.mha_in_dim}])"
)
self.input_layer = nn.Linear(self.in_chan, self.mha_in_dim)
else:
self.input_layer = None
self.in_norm = norms.get(norm_type)(self.mha_in_dim)
self.ola = DualPathProcessing(self.chunk_size, self.hop_size)
# Succession of DPRNNBlocks.
self.layers = nn.ModuleList([])
for x in range(self.n_repeats):
self.layers.append(
nn.ModuleList(
[
ImprovedTransformedLayer(
self.mha_in_dim,
self.n_heads,
self.ff_hid,
self.dropout,
self.ff_activation,
True,
self.norm_type,
),
ImprovedTransformedLayer(
self.mha_in_dim,
self.n_heads,
self.ff_hid,
self.dropout,
self.ff_activation,
self.bidirectional,
self.norm_type,
),
]
)
)
net_out_conv = nn.Conv2d(self.mha_in_dim, n_src * self.in_chan, 1)
self.first_out = nn.Sequential(nn.PReLU(), net_out_conv)
# Gating and masking in 2D space (after fold)
self.net_out = nn.Sequential(nn.Conv1d(self.in_chan, self.in_chan, 1), nn.Tanh())
self.net_gate = nn.Sequential(nn.Conv1d(self.in_chan, self.in_chan, 1), nn.Sigmoid())
# Get activation function.
mask_nl_class = activations.get(mask_act)
# For softmax, feed the source dimension.
if has_arg(mask_nl_class, "dim"):
self.output_act = mask_nl_class(dim=1)
else:
self.output_act = mask_nl_class()
def forward(self, mixture_w):
r"""Forward.
Args:
mixture_w (:class:`torch.Tensor`): Tensor of shape $(batch, nfilters, nframes)$
Returns:
:class:`torch.Tensor`: estimated mask of shape $(batch, nsrc, nfilters, nframes)$
"""
if self.input_layer is not None:
mixture_w = self.input_layer(mixture_w.transpose(1, 2)).transpose(1, 2)
mixture_w = self.in_norm(mixture_w) # [batch, bn_chan, n_frames]
n_orig_frames = mixture_w.shape[-1]
mixture_w = self.ola.unfold(mixture_w)
batch, n_filters, self.chunk_size, n_chunks = mixture_w.size()
for layer_idx in range(len(self.layers)):
intra, inter = self.layers[layer_idx]
mixture_w = self.ola.intra_process(mixture_w, intra)
mixture_w = self.ola.inter_process(mixture_w, inter)
output = self.first_out(mixture_w)
output = output.reshape(batch * self.n_src, self.in_chan, self.chunk_size, n_chunks)
output = self.ola.fold(output, output_size=n_orig_frames)
output = self.net_out(output) * self.net_gate(output)
# Compute mask
output = output.reshape(batch, self.n_src, self.in_chan, -1)
est_mask = self.output_act(output)
return est_mask
def get_config(self):
config = {
"in_chan": self.in_chan,
"ff_hid": self.ff_hid,
"n_heads": self.n_heads,
"chunk_size": self.chunk_size,
"hop_size": self.hop_size,
"n_repeats": self.n_repeats,
"n_src": self.n_src,
"norm_type": self.norm_type,
"ff_activation": self.ff_activation,
"mask_act": self.mask_act,
"bidirectional": self.bidirectional,
"dropout": self.dropout,
}
return config
def has_arg(fn, name):
"""Checks if a callable accepts a given keyword argument.
Args:
fn (callable): Callable to inspect.
name (str): Check if `fn` can be called with `name` as a keyword
argument.
Returns:
bool: whether `fn` accepts a `name` keyword argument.
"""
signature = inspect.signature(fn)
parameter = signature.parameters.get(name)
if parameter is None:
return False
return parameter.kind in (
inspect.Parameter.POSITIONAL_OR_KEYWORD,
inspect.Parameter.KEYWORD_ONLY,
)