|
|
|
|
|
import os
|
|
import torch
|
|
import numpy as np
|
|
import torchaudio
|
|
from huggingface_hub import hf_hub_download
|
|
from . import asteroid_test
|
|
|
|
torchaudio.set_audio_backend("sox_io")
|
|
|
|
def get_conf():
|
|
conf_filterbank = {
|
|
'n_filters': 64,
|
|
'kernel_size': 16,
|
|
'stride': 8
|
|
}
|
|
|
|
conf_masknet = {
|
|
'in_chan': 64,
|
|
'n_src': 2,
|
|
'out_chan': 64,
|
|
'ff_hid': 256,
|
|
'ff_activation': "relu",
|
|
'norm_type': "gLN",
|
|
'chunk_size': 100,
|
|
'hop_size': 50,
|
|
'n_repeats': 2,
|
|
'mask_act': 'sigmoid',
|
|
'bidirectional': True,
|
|
'dropout': 0
|
|
}
|
|
return conf_filterbank, conf_masknet
|
|
|
|
|
|
def load_dpt_model():
|
|
print('Load Separation Model...')
|
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
if not HF_TOKEN:
|
|
raise EnvironmentError("環境變數 HF_TOKEN 未設定!請先執行 export HF_TOKEN=xxx")
|
|
|
|
|
|
model_path = hf_hub_download(
|
|
repo_id="DeepLearning101/speech-separation",
|
|
filename="train_dptnet_aishell_partOverlap_B2_300epoch_quan-int8.p",
|
|
token=HF_TOKEN
|
|
)
|
|
|
|
|
|
conf_filterbank, conf_masknet = get_conf()
|
|
|
|
|
|
model_class = getattr(asteroid_test, "DPTNet")
|
|
model = model_class(**conf_filterbank, **conf_masknet)
|
|
|
|
|
|
model = torch.quantization.quantize_dynamic(
|
|
model,
|
|
{torch.nn.LSTM, torch.nn.Linear},
|
|
dtype=torch.qint8
|
|
)
|
|
|
|
|
|
state_dict = torch.load(model_path, map_location="cpu")
|
|
model_state_dict = model.state_dict()
|
|
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
|
|
model.load_state_dict(filtered_state_dict, strict=False)
|
|
model.eval()
|
|
|
|
return model
|
|
|
|
|
|
def dpt_sep_process(wav_path, model=None, outfilename=None):
|
|
if model is None:
|
|
model = load_dpt_model()
|
|
|
|
x, sr = torchaudio.load(wav_path)
|
|
x = x.cpu()
|
|
|
|
with torch.no_grad():
|
|
est_sources = model(x)
|
|
|
|
est_sources = est_sources.squeeze(0)
|
|
sep_1, sep_2 = est_sources
|
|
|
|
|
|
max_abs = x[0].abs().max().item()
|
|
sep_1 = sep_1 * max_abs / sep_1.abs().max().item()
|
|
sep_2 = sep_2 * max_abs / sep_2.abs().max().item()
|
|
|
|
|
|
sep_1 = sep_1.unsqueeze(0)
|
|
sep_2 = sep_2.unsqueeze(0)
|
|
|
|
|
|
if outfilename is not None:
|
|
torchaudio.save(outfilename.replace('.wav', '_sep1.wav'), sep_1, sr)
|
|
torchaudio.save(outfilename.replace('.wav', '_sep2.wav'), sep_2, sr)
|
|
torchaudio.save(outfilename.replace('.wav', '_mix.wav'), x, sr)
|
|
else:
|
|
torchaudio.save(wav_path.replace('.wav', '_sep1.wav'), sep_1, sr)
|
|
torchaudio.save(wav_path.replace('.wav', '_sep2.wav'), sep_2, sr)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print("This module should be used via Flask or Gradio.") |