File size: 12,892 Bytes
b6c45cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import os
import warnings
import numpy as np
import torch
from torch import nn
from ..masknn import activations
from ..utils.torch_utils import pad_x_to_y
def _unsqueeze_to_3d(x):
if x.ndim == 1:
return x.reshape(1, 1, -1)
elif x.ndim == 2:
return x.unsqueeze(1)
else:
return x
class BaseModel(nn.Module):
def __init__(self):
print("initialize BaseModel")
super().__init__()
def forward(self, *args, **kwargs):
raise NotImplementedError
@torch.no_grad()
def separate(self, wav, output_dir=None, force_overwrite=False, **kwargs):
"""Infer separated sources from input waveforms.
Also supports filenames.
Args:
wav (Union[torch.Tensor, numpy.ndarray, str]): waveform array/tensor.
Shape: 1D, 2D or 3D tensor, time last.
output_dir (str): path to save all the wav files. If None,
estimated sources will be saved next to the original ones.
force_overwrite (bool): whether to overwrite existing files.
**kwargs: keyword arguments to be passed to `_separate`.
Returns:
Union[torch.Tensor, numpy.ndarray, None], the estimated sources.
(batch, n_src, time) or (n_src, time) w/o batch dim.
.. note::
By default, `separate` calls `_separate` which calls `forward`.
For models whose `forward` doesn't return waveform tensors,
overwrite `_separate` to return waveform tensors.
"""
if isinstance(wav, str):
self.file_separate(
wav, output_dir=output_dir, force_overwrite=force_overwrite, **kwargs
)
elif isinstance(wav, np.ndarray):
print("is ndarray")
# import pdb ; pdb.set_trace()
return self.numpy_separate(wav, **kwargs)
elif isinstance(wav, torch.Tensor):
print("is torch.Tensor")
return self.torch_separate(wav, **kwargs)
else:
raise ValueError(
f"Only support filenames, numpy arrays and torch tensors, received {type(wav)}"
)
def torch_separate(self, wav: torch.Tensor, **kwargs) -> torch.Tensor:
""" Core logic of `separate`."""
# Handle device placement
input_device = wav.device
model_device = next(self.parameters()).device
wav = wav.to(model_device)
# Forward
out_wavs = self._separate(wav, **kwargs)
# FIXME: for now this is the best we can do.
out_wavs *= wav.abs().sum() / (out_wavs.abs().sum())
# Back to input device (and numpy if necessary)
out_wavs = out_wavs.to(input_device)
return out_wavs
def numpy_separate(self, wav: np.ndarray, **kwargs) -> np.ndarray:
""" Numpy interface to `separate`."""
wav = torch.from_numpy(wav)
out_wav = self.torch_separate(wav, **kwargs)
out_wav = out_wav.data.numpy()
return out_wav
def file_separate(
self, filename: str, output_dir=None, force_overwrite=False, **kwargs
) -> None:
""" Filename interface to `separate`."""
import soundfile as sf
wav, fs = sf.read(filename, dtype="float32", always_2d=True)
# FIXME: support only single-channel files for now.
to_save = self.numpy_separate(wav[:, 0], **kwargs)
# Save wav files to filename_est1.wav etc...
for src_idx, est_src in enumerate(to_save):
base = ".".join(filename.split(".")[:-1])
save_name = base + "_est{}.".format(src_idx + 1) + filename.split(".")[-1]
if os.path.isfile(save_name) and not force_overwrite:
warnings.warn(
f"File {save_name} already exists, pass `force_overwrite=True` to overwrite it",
UserWarning,
)
return
if output_dir is not None:
save_name = os.path.join(output_dir, save_name.split("/")[-1])
sf.write(save_name, est_src, fs)
def _separate(self, wav, *args, **kwargs):
"""Hidden separation method
Args:
wav (Union[torch.Tensor, numpy.ndarray, str]): waveform array/tensor.
Shape: 1D, 2D or 3D tensor, time last.
Returns:
The output of self(wav, *args, **kwargs).
"""
return self(wav, *args, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_conf_or_path, *args, **kwargs):
"""Instantiate separation model from a model config (file or dict).
Args:
pretrained_model_conf_or_path (Union[dict, str]): model conf as
returned by `serialize`, or path to it. Need to contain
`model_args` and `state_dict` keys.
*args: Positional arguments to be passed to the model.
**kwargs: Keyword arguments to be passed to the model.
They overwrite the ones in the model package.
Returns:
nn.Module corresponding to the pretrained model conf/URL.
Raises:
ValueError if the input config file doesn't contain the keys
`model_name`, `model_args` or `state_dict`.
"""
from . import get # Avoid circular imports
if isinstance(pretrained_model_conf_or_path, str):
# cached_model = self.cached_download(pretrained_model_conf_or_path)
if os.path.isfile(pretrained_model_conf_or_path):
cached_model = pretrained_model_conf_or_path
else:
raise ValueError(
"Model {} is not a file or doesn't exist.".format(pretrained_model_conf_or_path)
)
conf = torch.load(cached_model, map_location="cpu")
else:
conf = pretrained_model_conf_or_path
if "model_name" not in conf.keys():
raise ValueError(
"Expected config dictionary to have field "
"model_name`. Found only: {}".format(conf.keys())
)
if "state_dict" not in conf.keys():
raise ValueError(
"Expected config dictionary to have field "
"state_dict`. Found only: {}".format(conf.keys())
)
if "model_args" not in conf.keys():
raise ValueError(
"Expected config dictionary to have field "
"model_args`. Found only: {}".format(conf.keys())
)
conf["model_args"].update(kwargs) # kwargs overwrite config.
# Attempt to find the model and instantiate it.
try:
model_class = get(conf["model_name"])
except ValueError: # Couldn't get the model, maybe custom.
model = cls(*args, **conf["model_args"]) # Child class.
else:
model = model_class(*args, **conf["model_args"])
model.load_state_dict(conf["state_dict"])
return model
def serialize(self):
"""Serialize model and output dictionary.
Returns:
dict, serialized model with keys `model_args` and `state_dict`.
"""
import pytorch_lightning as pl # Not used in torch.hub
from .. import __version__ as asteroid_version # Avoid circular imports
model_conf = dict(
model_name=self.__class__.__name__,
state_dict=self.get_state_dict(),
model_args=self.get_model_args(),
)
# Additional infos
infos = dict()
infos["software_versions"] = dict(
torch_version=torch.__version__,
pytorch_lightning_version=pl.__version__,
asteroid_version=asteroid_version,
)
model_conf["infos"] = infos
return model_conf
def get_state_dict(self):
""" In case the state dict needs to be modified before sharing the model."""
return self.state_dict()
def get_model_args(self):
raise NotImplementedError
def cached_download(self, filename_or_url):
if os.path.isfile(filename_or_url):
print("is file")
return filename_or_url
else:
print("Model {} is not a file or doesn't exist.".format(filename_or_url))
class BaseEncoderMaskerDecoder(BaseModel):
"""Base class for encoder-masker-decoder separation models.
Args:
encoder (Encoder): Encoder instance.
masker (nn.Module): masker network.
decoder (Decoder): Decoder instance.
encoder_activation (Optional[str], optional): Activation to apply after encoder.
See ``asteroid.masknn.activations`` for valid values.
"""
def __init__(self, encoder, masker, decoder, encoder_activation=None):
super().__init__()
self.encoder = encoder
self.masker = masker
self.decoder = decoder
self.encoder_activation = encoder_activation
self.enc_activation = activations.get(encoder_activation or "linear")()
def forward(self, wav):
"""Enc/Mask/Dec model forward
Args:
wav (torch.Tensor): waveform tensor. 1D, 2D or 3D tensor, time last.
Returns:
torch.Tensor, of shape (batch, n_src, time) or (n_src, time).
"""
# Handle 1D, 2D or n-D inputs
was_one_d = wav.ndim == 1
# Reshape to (batch, n_mix, time)
wav = _unsqueeze_to_3d(wav)
# Real forward
tf_rep = self.encoder(wav)
tf_rep = self.postprocess_encoded(tf_rep)
tf_rep = self.enc_activation(tf_rep)
est_masks = self.masker(tf_rep)
est_masks = self.postprocess_masks(est_masks)
masked_tf_rep = est_masks * tf_rep.unsqueeze(1)
masked_tf_rep = self.postprocess_masked(masked_tf_rep)
decoded = self.decoder(masked_tf_rep)
decoded = self.postprocess_decoded(decoded)
reconstructed = pad_x_to_y(decoded, wav)
if was_one_d:
return reconstructed.squeeze(0)
else:
return reconstructed
def postprocess_encoded(self, tf_rep):
"""Hook to perform transformations on the encoded, time-frequency domain
representation (output of the encoder) before encoder activation is applied.
Args:
tf_rep (Tensor of shape (batch, freq, time)):
Output of the encoder, before encoder activation is applied.
Return:
Transformed `tf_rep`
"""
return tf_rep
def postprocess_masks(self, masks):
"""Hook to perform transformations on the masks (output of the masker) before
masks are applied.
Args:
masks (Tensor of shape (batch, n_src, freq, time)):
Output of the masker
Return:
Transformed `masks`
"""
return masks
def postprocess_masked(self, masked_tf_rep):
"""Hook to perform transformations on the masked time-frequency domain
representation (result of masking in the time-frequency domain) before decoding.
Args:
masked_tf_rep (Tensor of shape (batch, n_src, freq, time)):
Masked time-frequency representation, before decoding.
Return:
Transformed `masked_tf_rep`
"""
return masked_tf_rep
def postprocess_decoded(self, decoded):
"""Hook to perform transformations on the decoded, time domain representation
(output of the decoder) before original shape reconstruction.
Args:
decoded (Tensor of shape (batch, n_src, time)):
Output of the decoder, before original shape reconstruction.
Return:
Transformed `decoded`
"""
return decoded
def get_model_args(self):
""" Arguments needed to re-instantiate the model. """
fb_config = self.encoder.filterbank.get_config()
masknet_config = self.masker.get_config()
# Assert both dict are disjoint
if not all(k not in fb_config for k in masknet_config):
raise AssertionError(
"Filterbank and Mask network config share" "common keys. Merging them is not safe."
)
# Merge all args under model_args.
model_args = {
**fb_config,
**masknet_config,
"encoder_activation": self.encoder_activation,
}
return model_args
# Backwards compatibility
BaseTasNet = BaseEncoderMaskerDecoder
|