# -*- coding: utf-8 -*- import gradio as gr import operator import torch from transformers import BertTokenizer, BertForMaskedLM # 使用私有模型和分詞器 model_name_or_path = "DeepLearning101/Corrector101zhTW" auth_token = os.getenv("Corrector101zhTW") # 從環境變量中獲取 token # tokenizer = BertTokenizer.from_pretrained(model_name_or_path, use_auth_token=auth_token) # model = BertForMaskedLM.from_pretrained(model_name_or_path, use_auth_token=auth_token) tokenizer = BertTokenizer.from_pretrained(model_name_or_path) model = BertForMaskedLM.from_pretrained(model_name_or_path) def ai_text(text): with torch.no_grad(): outputs = model(**tokenizer([text], padding=True, return_tensors='pt')) def to_highlight(corrected_sent, errs): output = [{"entity": "糾錯", "word": err[1], "start": err[2], "end": err[3]} for i, err in enumerate(errs)] return {"text": corrected_sent, "entities": output} def get_errors(corrected_text, origin_text): sub_details = [] for i, ori_char in enumerate(origin_text): if ori_char in [' ', '“', '”', '‘', '’', '琊', '\n', '…', '—', '擤']: # add unk word corrected_text = corrected_text[:i] + ori_char + corrected_text[i:] continue if i >= len(corrected_text): continue if ori_char != corrected_text[i]: if ori_char.lower() == corrected_text[i]: # pass english upper char corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] continue sub_details.append((ori_char, corrected_text[i], i, i + 1)) sub_details = sorted(sub_details, key=operator.itemgetter(2)) return corrected_text, sub_details _text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '') corrected_text = _text[:len(text)] corrected_text, details = get_errors(corrected_text, text) print(text, ' => ', corrected_text, details) return corrected_text + ' ' + str(details) if __name__ == '__main__': examples = [ ['你究輸入利的手機門號跟生分證就可以了。'], ['這裡是客服中新,很高性為您服物,請問金天有什麼須要幫忙'], ['因為我們這邊是按天術比例計蒜給您的,其實不會有態大的穎響。也就是您用前面的資非的廢率來做計算'], ['我來看以下,他的時價是多少?起實您就可以直皆就不用到門事'], ['因為你現在月富是六九九嘛,我幫擬減衣百塊,兒且也不會江速'], ] inputs=[gr.Textbox(lines=2, label="欲校正的文字")], outputs=[gr.Textbox(lines=2, label="修正後的文字")], gr.Interface( inputs='text', outputs='text', title="客服ASR文本AI糾錯系統", description=""" TonTon Huang Ph.D. @ 2024/04
輸入ASR文本,糾正同音字/詞錯誤
Masked Language Model (MLM) as correction BERT """, examples=examples ).launch()